Abundo M
Dipartimento di Matematica, II Universitá di Roma Tor Vergata, Italy.
J Math Biol. 1991;29(6):495-511. doi: 10.1007/BF00164048.
A simple stochastic description of a model of a predator-prey system is given. The evolution of the system is described by means of Itô's stochastic differential equations (SDEs), which are the natural stochastic generalization of the Lotka-Volterra deterministic differential equations. Since these SDEs do not satisfy the usual conditions for the existence and uniqueness of the solution, we state a theorem of existence; moreover we study the stability of the equilibrium point and perform a computer simulation to study the behaviour of the trajectories of solutions with given initial data and to estimate first and second moments.
给出了一个捕食者 - 猎物系统模型的简单随机描述。该系统的演化通过伊藤随机微分方程(SDEs)来描述,这些方程是洛特卡 - 沃尔泰拉确定性微分方程的自然随机推广。由于这些随机微分方程不满足解的存在性和唯一性的通常条件,我们陈述了一个存在性定理;此外,我们研究了平衡点的稳定性,并进行了计算机模拟,以研究给定初始数据下解轨迹的行为,并估计一阶和二阶矩。