Suppr超能文献

利用3'非翻译区中的组织选择性基序预测人类微小RNA

Prediction of human miRNAs using tissue-selective motifs in 3' UTRs.

作者信息

Chang Yao-Ming, Juan Hsueh-Fen, Lee Tzu-Ying, Chang Ya-Ya, Yeh Yao-Ming, Li Wen-Hsiung, Shih Arthur Chun-Chieh

机构信息

Institute of Information Science, Innovation Research Center, and Biodiversity Research Center and Genomics Research Center, Academia Sinica, Nankang, Taipei, Taiwan.

出版信息

Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):17061-6. doi: 10.1073/pnas.0809151105. Epub 2008 Oct 24.

Abstract

MicroRNAs (miRNAs) play an important role in posttranscriptional regulation of genes. We developed a method to predict human miRNAs without requiring cross-species conservation. We first identified lowly/moderately expressed tissue-selective genes using EST data and then identified overrepresented motifs of seven nucleotides in the 3' UTRs of these genes. Using these motifs as potential target sites of miRNAs, we recovered more than two-thirds of the known human miRNAs. We then used those motifs that did not match any known human miRNA seed region to infer novel miRNAs. We predicted 36 new human miRNA genes with 44 mature forms and 4 novel alternative mature forms of 2 known miRNA genes when a stringent criterion was used and many more novel miRNAs when a less stringent criterion was used. We tested the expression of 11 predicted miRNAs in three human cell lines and found 5 of them expressed in all three cell lines and 1 expressed in one cell line. We selected 2 of them, P-2 and P-27-5p, to do functional validation, using their mimics and inhibitors and using both luciferase assay and Western blotting. These experiments provided strong evidence that both P-2 and P-27-5p are novel miRNAs and that CREB3L3, which encodes cAMP-responsive element binding protein 3-like 3, is a target gene of P-2, whereas LAMB3, which encodes laminin beta3, is a target gene of P-27-5p.

摘要

微小RNA(miRNA)在基因的转录后调控中发挥着重要作用。我们开发了一种无需跨物种保守性即可预测人类miRNA的方法。我们首先利用EST数据鉴定出低表达/中等表达的组织选择性基因,然后在这些基因的3'非翻译区(UTR)中鉴定出七核苷酸的过度富集基序。将这些基序作为miRNA的潜在靶位点,我们找回了超过三分之二的已知人类miRNA。然后,我们使用那些与任何已知人类miRNA种子区域不匹配的基序来推断新的miRNA。当使用严格标准时,我们预测了36个新的人类miRNA基因,其具有44种成熟形式以及2个已知miRNA基因的4种新的可变成熟形式;当使用较宽松标准时,预测出的新miRNA更多。我们在三种人类细胞系中测试了11个预测的miRNA的表达,发现其中5个在所有三种细胞系中均有表达,1个在一种细胞系中有表达。我们选择其中2个,即P-2和P-27-5p,使用它们的模拟物和抑制剂,并通过荧光素酶测定和蛋白质印迹法进行功能验证。这些实验提供了强有力的证据,证明P-2和P-27-5p均为新的miRNA,并且编码cAMP反应元件结合蛋白3样3的CREB3L3是P-2的靶基因,而编码层粘连蛋白β3的LAMB3是P-27-5p的靶基因。

相似文献

1
Prediction of human miRNAs using tissue-selective motifs in 3' UTRs.利用3'非翻译区中的组织选择性基序预测人类微小RNA
Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):17061-6. doi: 10.1073/pnas.0809151105. Epub 2008 Oct 24.
5
Molecular architecture of a miRNA-regulated 3' UTR.微小RNA调控的3'非翻译区的分子结构
RNA. 2008 Jul;14(7):1297-317. doi: 10.1261/rna.1082708. Epub 2008 May 7.

引用本文的文献

1
miRSCAPE - inferring miRNA expression from scRNA-seq data.miRSCAPE - 从单细胞RNA测序数据推断微小RNA表达
iScience. 2022 Aug 17;25(9):104962. doi: 10.1016/j.isci.2022.104962. eCollection 2022 Sep 16.
4
A Review of Computational Tools in microRNA Discovery.计算工具在 microRNA 发现中的研究综述。
Front Genet. 2013 May 15;4:81. doi: 10.3389/fgene.2013.00081. eCollection 2013.
8
Computational approaches for microRNA studies: a review.计算方法在 microRNA 研究中的应用:综述
Mamm Genome. 2010 Feb;21(1-2):1-12. doi: 10.1007/s00335-009-9241-2. Epub 2009 Dec 15.

本文引用的文献

3
miRBase: tools for microRNA genomics.miRBase:用于微小RNA基因组学的工具。
Nucleic Acids Res. 2008 Jan;36(Database issue):D154-8. doi: 10.1093/nar/gkm952. Epub 2007 Nov 8.
6
RNAi, microRNAs, and human disease.RNA干扰、微小RNA与人类疾病。
Cancer Chemother Pharmacol. 2006 Nov;58 Suppl 1:s63-8. doi: 10.1007/s00280-006-0318-2.
8
microRNA target predictions in animals.动物中的微小RNA靶标预测
Nat Genet. 2006 Jun;38 Suppl:S8-13. doi: 10.1038/ng1798.
9
Detecting and profiling tissue-selective genes.检测和分析组织选择性基因。
Physiol Genomics. 2006 Jul 12;26(2):158-62. doi: 10.1152/physiolgenomics.00313.2005. Epub 2006 May 9.
10
Method for identifying transcription factor binding sites in yeast.鉴定酵母中转录因子结合位点的方法。
Bioinformatics. 2006 Jul 15;22(14):1675-81. doi: 10.1093/bioinformatics/btl160. Epub 2006 Apr 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验