Suppr超能文献

生物信息学预测在基于微小RNA的癌症治疗中的作用。

Contribution of bioinformatics prediction in microRNA-based cancer therapeutics.

作者信息

Banwait Jasjit K, Bastola Dhundy R

机构信息

College of Information Science and Technology, University of Nebraska at Omaha, 1110 South 67th Street, PKI 172, Omaha, NE 68106, USA.

出版信息

Adv Drug Deliv Rev. 2015 Jan;81:94-103. doi: 10.1016/j.addr.2014.10.030. Epub 2014 Nov 6.

Abstract

Despite enormous efforts, cancer remains one of the most lethal diseases in the world. With the advancement of high throughput technologies massive amounts of cancer data can be accessed and analyzed. Bioinformatics provides a platform to assist biologists in developing minimally invasive biomarkers to detect cancer, and in designing effective personalized therapies to treat cancer patients. Still, the early diagnosis, prognosis, and treatment of cancer are an open challenge for the research community. MicroRNAs (miRNAs) are small non-coding RNAs that serve to regulate gene expression. The discovery of deregulated miRNAs in cancer cells and tissues has led many to investigate the use of miRNAs as potential biomarkers for early detection, and as a therapeutic agent to treat cancer. Here we describe advancements in computational approaches to predict miRNAs and their targets, and discuss the role of bioinformatics in studying miRNAs in the context of human cancer.

摘要

尽管付出了巨大努力,癌症仍然是世界上最致命的疾病之一。随着高通量技术的进步,可以获取和分析大量的癌症数据。生物信息学提供了一个平台,帮助生物学家开发用于检测癌症的微创生物标志物,并设计有效的个性化疗法来治疗癌症患者。然而,癌症的早期诊断、预后和治疗仍然是研究界面临的一个开放性挑战。微小RNA(miRNA)是一类用于调节基因表达的小型非编码RNA。在癌细胞和组织中发现失调的miRNA,促使许多人研究将miRNA用作早期检测的潜在生物标志物,以及作为治疗癌症的治疗剂。在这里,我们描述了预测miRNA及其靶标的计算方法的进展,并讨论了生物信息学在人类癌症背景下研究miRNA中的作用。

相似文献

1
Contribution of bioinformatics prediction in microRNA-based cancer therapeutics.
Adv Drug Deliv Rev. 2015 Jan;81:94-103. doi: 10.1016/j.addr.2014.10.030. Epub 2014 Nov 6.
2
microRNAs and Personalized Medicine: Evaluating Their Potential as Cancer Biomarkers.
Adv Exp Med Biol. 2015;888:5-15. doi: 10.1007/978-3-319-22671-2_2.
3
Identifying cancer-related microRNAs based on gene expression data.
Bioinformatics. 2015 Apr 15;31(8):1226-34. doi: 10.1093/bioinformatics/btu811. Epub 2014 Dec 12.
4
Computational Analysis of Specific MicroRNA Biomarkers for Noninvasive Early Cancer Detection.
Biomed Res Int. 2017;2017:4680650. doi: 10.1155/2017/4680650. Epub 2017 Mar 5.
5
MiRNA-BD: an evidence-based bioinformatics model and software tool for microRNA biomarker discovery.
RNA Biol. 2018;15(8):1093-1105. doi: 10.1080/15476286.2018.1502590. Epub 2018 Sep 17.
7
A review of computational approaches detecting microRNAs involved in cancer.
Front Biosci (Landmark Ed). 2017 Jun 1;22(10):1774-1791. doi: 10.2741/4571.
8
Bioinformatics, non-coding RNAs and its possible application in personalized medicine.
Adv Exp Med Biol. 2013;774:21-37. doi: 10.1007/978-94-007-5590-1_2.
9
Circulating cell-free microRNAs as clinical cancer biomarkers.
Biomol Concepts. 2017 May 24;8(2):61-81. doi: 10.1515/bmc-2017-0002.
10
MicroRNAs: biogenesis, roles for carcinogenesis and as potential biomarkers for cancer diagnosis and prognosis.
Asian Pac J Cancer Prev. 2014;15(18):7489-97. doi: 10.7314/apjcp.2014.15.18.7489.

引用本文的文献

1
MGAT4EP promotes tumor progression and serves as a prognostic marker for breast cancer.
Cancer Biol Ther. 2025 Dec;26(1):2475604. doi: 10.1080/15384047.2025.2475604. Epub 2025 Mar 11.
3
Lymph node metastasis determined miRNAs in esophageal squamous cell carcinoma.
Aging (Albany NY). 2024 Oct 14;16(20):13104-13116. doi: 10.18632/aging.206122.
6
Role of miRNAs to control the progression of Chronic Myeloid Leukemia by their expression levels.
Med Oncol. 2024 Jan 12;41(2):55. doi: 10.1007/s12032-023-02278-1.
8
Comprehensive Analysis of Molecular Subtypes and Hub Genes of Sepsis by Gene Expression Profiles.
Front Genet. 2022 Aug 12;13:884762. doi: 10.3389/fgene.2022.884762. eCollection 2022.
9
Pan-cancer analysis on the role of PIK3R1 and PIK3R2 in human tumors.
Sci Rep. 2022 Apr 8;12(1):5924. doi: 10.1038/s41598-022-09889-0.

本文引用的文献

1
Reanalysis of the gene expression profile in chronic pancreatitis via bioinformatics methods.
Eur J Med Res. 2014 May 29;19(1):31. doi: 10.1186/2047-783X-19-31.
2
Analysis of dysregulation of immune system in pancreatic cancer based on gene expression profile.
Mol Biol Rep. 2014 Jul;41(7):4361-7. doi: 10.1007/s11033-014-3307-2. Epub 2014 Mar 12.
4
Optimisation of miRNA-mRNA relationship prediction using biological features.
Int J Comput Biol Drug Des. 2014;7(1):45-60. doi: 10.1504/IJCBDD.2014.058587. Epub 2014 Jan 9.
5
Analysis of regulatory networks constructed based on gene coexpression in pituitary adenoma.
J Genet. 2013 Dec;92(3):489-97. doi: 10.1007/s12041-013-0299-y.
6
The Reactome pathway knowledgebase.
Nucleic Acids Res. 2014 Jan;42(Database issue):D472-7. doi: 10.1093/nar/gkt1102. Epub 2013 Nov 15.
7
microRNA and gene networks in human pancreatic cancer.
Oncol Lett. 2013 Oct;6(4):1133-1139. doi: 10.3892/ol.2013.1521. Epub 2013 Aug 9.
8
miRNA-141, downregulated in pancreatic cancer, inhibits cell proliferation and invasion by directly targeting MAP4K4.
Mol Cancer Ther. 2013 Nov;12(11):2569-80. doi: 10.1158/1535-7163.MCT-13-0296. Epub 2013 Sep 6.
9
Key genes for modulating information flow play a temporal role as breast tumor coexpression networks are dynamically rewired by letrozole.
BMC Med Genomics. 2013;6 Suppl 2(Suppl 2):S2. doi: 10.1186/1755-8794-6-S2-S2. Epub 2013 May 7.
10
Correlating transcriptional networks to breast cancer survival: a large-scale coexpression analysis.
Carcinogenesis. 2013 Oct;34(10):2300-8. doi: 10.1093/carcin/bgt208. Epub 2013 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验