Suppr超能文献

运动学习中的变异性:重新定位、引导和减少噪音。

Variability in motor learning: relocating, channeling and reducing noise.

作者信息

Cohen R G, Sternad D

机构信息

Department of Psychology, The Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Exp Brain Res. 2009 Feb;193(1):69-83. doi: 10.1007/s00221-008-1596-1. Epub 2008 Oct 25.

Abstract

Variability in motor performance decreases with practice but is never entirely eliminated, due in part to inherent motor noise. The present study develops a method that quantifies how performers can shape their performance to minimize the effects of motor noise on the result of the movement. Adopting a statistical approach on sets of data, the method quantifies three components of variability (tolerance, noise, and covariation) as costs with respect to optimal performance. T-Cost quantifies how much the result could be improved if the location of the data were optimal, N-Cost compares actual results to results with optimal dispersion at the same location, and C-Cost represents how much improvement stands to be gained if the data covaried optimally. The TNC-Cost analysis is applied to examine the learning of a throwing task that participants practiced for 6 or 15 days. Using a virtual set-up, 15 participants threw a pendular projectile in a simulated concentric force field to hit a target. Two variables, angle and velocity at release, fully determined the projectile's trajectory and thereby the accuracy of the throw. The task is redundant and the successful solutions define a nonlinear manifold. Analysis of experimental results indicated that all three components were present and that all three decreased across practice. Changes in T-Cost were considerable at the beginning of practice; C-Cost and N-Cost diminished more slowly, with N-Cost remaining the highest. These results showed that performance variability can be reduced by three routes: by tuning tolerance, covariation and noise in execution. We speculate that by exploiting T-Cost and C-Cost, participants minimize the effects of inevitable intrinsic noise.

摘要

运动表现的变异性会随着练习而降低,但由于内在的运动噪声,这种变异性永远不会完全消除。本研究开发了一种方法,该方法可以量化表演者如何塑造自己的表现,以尽量减少运动噪声对运动结果的影响。该方法采用统计方法处理数据集,将变异性的三个组成部分(容差、噪声和协变)量化为相对于最佳表现的成本。T成本量化了如果数据位置最佳,结果可以改善多少;N成本将实际结果与相同位置具有最佳离散度的结果进行比较;C成本表示如果数据协变最佳,有望获得多少改善。TNC成本分析用于检验参与者练习6天或15天的投掷任务的学习情况。使用虚拟设置,15名参与者在模拟的同心力场中投掷摆锤式抛射体以击中目标。两个变量,即释放时的角度和速度,完全决定了抛射体的轨迹,从而决定了投掷的准确性。该任务是冗余的,成功的解决方案定义了一个非线性流形。实验结果分析表明,所有三个组成部分都存在,并且在练习过程中所有三个组成部分都有所下降。练习开始时,T成本变化很大;C成本和N成本下降得较慢,其中N成本仍然最高。这些结果表明,运动表现的变异性可以通过三条途径降低:通过调整执行中的容差、协变和噪声。我们推测,通过利用T成本和C成本,参与者可以将不可避免的内在噪声的影响降至最低。

相似文献

引用本文的文献

5
Designing and Analyzing In-Place Motor Tasks in Virtual Reality With Goal Functions.使用目标函数设计和分析虚拟现实中的在位电机任务。
IEEE Trans Neural Syst Rehabil Eng. 2024;32:2928-2938. doi: 10.1109/TNSRE.2024.3439500. Epub 2024 Aug 16.
8
The ability to appropriately distinguish throws for different target positions.能够适当地区分针对不同目标位置的投掷动作。
Front Sports Act Living. 2023 Sep 6;5:1250938. doi: 10.3389/fspor.2023.1250938. eCollection 2023.
10
Neuromuscular control: from a biomechanist's perspective.神经肌肉控制:从生物力学家的视角
Front Sports Act Living. 2023 Jul 5;5:1217009. doi: 10.3389/fspor.2023.1217009. eCollection 2023.

本文引用的文献

4
A central source of movement variability.运动变异性的一个核心来源。
Neuron. 2006 Dec 21;52(6):1085-96. doi: 10.1016/j.neuron.2006.10.034.
5
Body-goal variability mapping in an aiming task.瞄准任务中的身体目标变异性映射
Biol Cybern. 2006 May;94(5):367-79. doi: 10.1007/s00422-006-0052-1. Epub 2006 Feb 24.
10
Learning the cascade juggle: a dynamical systems analysis.学习级联杂耍:一种动态系统分析
J Mot Behav. 1992 Mar;24(1):85-94. doi: 10.1080/00222895.1992.9941604.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验