Suppr超能文献

动态中继尽管传导延迟较长,但仍可产生零时间滞后的神经元同步。

Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays.

作者信息

Vicente Raul, Gollo Leonardo L, Mirasso Claudio R, Fischer Ingo, Pipa Gordon

机构信息

Department of Neurophysiology, Max Planck Institute for Brain Research, Deutschordenstrasse 46, 60528 Frankfurt, Germany.

出版信息

Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):17157-62. doi: 10.1073/pnas.0809353105. Epub 2008 Oct 28.

Abstract

Multielectrode recordings have revealed zero time lag synchronization among remote cerebral cortical areas. However, the axonal conduction delays among such distant regions can amount to several tens of milliseconds. It is still unclear which mechanism is giving rise to isochronous discharge of widely distributed neurons, despite such latencies. Here, we investigate the synchronization properties of a simple network motif and found that, even in the presence of large axonal conduction delays, distant neuronal populations self-organize into lag-free oscillations. According to our results, cortico-cortical association fibers and certain cortico-thalamo-cortical loops represent ideal circuits to circumvent the phase shifts and time lags associated with conduction delays.

摘要

多电极记录显示,在远程大脑皮层区域之间存在零时间延迟同步。然而,这些遥远区域之间的轴突传导延迟可达几十毫秒。尽管存在这样的延迟,但仍不清楚是哪种机制导致广泛分布的神经元同步放电。在这里,我们研究了一个简单网络基序的同步特性,发现即使存在大的轴突传导延迟,遥远的神经元群体也能自组织成无延迟振荡。根据我们的结果,皮质-皮质联合纤维和某些皮质-丘脑-皮质环路是规避与传导延迟相关的相移和时间延迟的理想电路。

相似文献

1
Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays.
Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):17157-62. doi: 10.1073/pnas.0809353105. Epub 2008 Oct 28.
2
Mechanisms of zero-lag synchronization in cortical motifs.
PLoS Comput Biol. 2014 Apr 24;10(4):e1003548. doi: 10.1371/journal.pcbi.1003548. eCollection 2014 Apr.
3
Effect of phase response curve skew on synchronization with and without conduction delays.
Front Neural Circuits. 2013 Dec 11;7:194. doi: 10.3389/fncir.2013.00194. eCollection 2013.
4
Dynamic control for synchronization of separated cortical areas through thalamic relay.
Neuroimage. 2010 Sep;52(3):947-55. doi: 10.1016/j.neuroimage.2009.11.058. Epub 2009 Dec 1.
5
Synchronization by elastic neuronal latencies.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jan;87(1):012724. doi: 10.1103/PhysRevE.87.012724. Epub 2013 Jan 29.
7
Spike-timing dynamics of neuronal groups.
Cereb Cortex. 2004 Aug;14(8):933-44. doi: 10.1093/cercor/bhh053. Epub 2004 May 13.
8
When Long-Range Zero-Lag Synchronization is Feasible in Cortical Networks.
Front Comput Neurosci. 2012 Jul 27;6:49. doi: 10.3389/fncom.2012.00049. eCollection 2012.
9
Phase-coherence transitions and communication in the gamma range between delay-coupled neuronal populations.
PLoS Comput Biol. 2014 Jul 24;10(7):e1003723. doi: 10.1371/journal.pcbi.1003723. eCollection 2014 Jul.
10
Flexible information routing by transient synchrony.
Nat Neurosci. 2017 Jul;20(7):1014-1022. doi: 10.1038/nn.4569. Epub 2017 May 22.

引用本文的文献

1
On the ability of standard and brain-constrained deep neural networks to support cognitive superposition: a position paper.
Cogn Neurodyn. 2024 Dec;18(6):3383-3400. doi: 10.1007/s11571-023-10061-1. Epub 2024 Feb 4.
2
The gamma rhythm as a guardian of brain health.
Elife. 2024 Nov 20;13:e100238. doi: 10.7554/eLife.100238.
3
Thalamic spindles and Up states coordinate cortical and hippocampal co-ripples in humans.
PLoS Biol. 2024 Nov 19;22(11):e3002855. doi: 10.1371/journal.pbio.3002855. eCollection 2024 Nov.
4
Stimulus type shapes the topology of cellular functional networks in mouse visual cortex.
Nat Commun. 2024 Jul 9;15(1):5753. doi: 10.1038/s41467-024-49704-0.
5
Synchronization of delayed coupled neurons with multiple synaptic connections.
Cogn Neurodyn. 2024 Apr;18(2):631-643. doi: 10.1007/s11571-023-10013-9. Epub 2023 Nov 10.
6
Measuring excitation-inhibition balance through spectral components of local field potentials.
bioRxiv. 2024 Jan 24:2024.01.24.577086. doi: 10.1101/2024.01.24.577086.
8
Dynamic switching of neural oscillations in the prefrontal-amygdala circuit for naturalistic freeze-or-flight.
Proc Natl Acad Sci U S A. 2023 Sep 12;120(37):e2308762120. doi: 10.1073/pnas.2308762120. Epub 2023 Sep 5.
9
Robust encoding of natural stimuli by neuronal response sequences in monkey visual cortex.
Nat Commun. 2023 May 25;14(1):3021. doi: 10.1038/s41467-023-38587-2.
10
In-phase and anti-phase bursting dynamics and synchronisation scenario in neural network by varying coupling phase.
J Biol Phys. 2023 Sep;49(3):345-361. doi: 10.1007/s10867-023-09635-1. Epub 2023 May 17.

本文引用的文献

2
Regulation of spike timing in visual cortical circuits.
Nat Rev Neurosci. 2008 Feb;9(2):97-107. doi: 10.1038/nrn2315.
3
Cells in somatosensory areas show synchrony with beta oscillations in monkey motor cortex.
Eur J Neurosci. 2007 Nov;26(9):2677-86. doi: 10.1111/j.1460-9568.2007.05890.x. Epub 2007 Oct 23.
4
Identification and classification of hubs in brain networks.
PLoS One. 2007 Oct 17;2(10):e1049. doi: 10.1371/journal.pone.0001049.
5
Network structure of cerebral cortex shapes functional connectivity on multiple time scales.
Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10240-5. doi: 10.1073/pnas.0701519104. Epub 2007 Jun 4.
6
Simultaneous bidirectional message transmission in a chaos-based communication scheme.
Opt Lett. 2007 Feb 15;32(4):403-5. doi: 10.1364/ol.32.000403.
7
Zero-lag long-range synchronization via dynamical relaying.
Phys Rev Lett. 2006 Sep 22;97(12):123902. doi: 10.1103/PhysRevLett.97.123902. Epub 2006 Sep 19.
8
Dynamics of neural populations: stability and synchrony.
Network. 2006 Mar;17(1):3-29. doi: 10.1080/09548980500421154.
9
Cortico-cerebellar coherence during a precision grip task in the monkey.
J Neurophysiol. 2006 Feb;95(2):1194-206. doi: 10.1152/jn.00935.2005.
10
A mechanism for cognitive dynamics: neuronal communication through neuronal coherence.
Trends Cogn Sci. 2005 Oct;9(10):474-80. doi: 10.1016/j.tics.2005.08.011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验