Suppr超能文献

通过非晶硅与玻璃的阳极键合制备纳米流体通道以研究离子积累和离子耗尽效应。

Nanofluidic channels by anodic bonding of amorphous silicon to glass to study ion-accumulation and ion-depletion effect.

作者信息

Datta Arindom, Gangopadhyay Shubhra, Temkin Henryk, Pu Qiaosheng, Liu Shaorong

机构信息

Nano Tech Center, Texas Tech University, Lubbock, TX 79409, USA.

出版信息

Talanta. 2006 Jan 15;68(3):659-65. doi: 10.1016/j.talanta.2005.05.011. Epub 2005 Jun 27.

Abstract

A unique phenomenon, ion-enrichment and ion-depletion effect, exists in nanofluidic channels and is observed in amorphous silicon (alpha-Si) nanochannels as shallow as 50 nm. As a voltage is applied across a nanochannel, ions are rapidly enriched at one end and depleted at the other end of the nanochannel. alpha-Si is deposited on glass by plasma enhanced chemical vapor deposition and is selectively etched to form nanochannels. The depth of nanochannels is defined by the thickness of the alpha-Si layer. Low temperature anodic bonding of alpha-Si to glass was used to seal the channel with a second glass wafer. The strength of the anodic bond was optimized by the introduction of a silicon nitride adhesion promoting layer and double-sided bonding resulting from the electric field reversal. Completed channels, 50 nm in depth, 5 micron wide, and 1 mm long were completely and reliably sealed. Structures based on nanochannels 50-300 nm deep were successfully incorporated into nanofluidic devices to investigate ionic accumulation and depletion effect due to overlapping of electric double layer.

摘要

一种独特的现象,即离子富集和离子耗尽效应,存在于纳米流体通道中,并且在深度仅为50纳米的非晶硅(α-Si)纳米通道中也被观察到。当在纳米通道两端施加电压时,离子会在纳米通道的一端迅速富集而在另一端耗尽。α-Si通过等离子体增强化学气相沉积法沉积在玻璃上,并通过选择性蚀刻形成纳米通道。纳米通道的深度由α-Si层的厚度决定。采用α-Si与玻璃的低温阳极键合,用第二块玻璃晶圆密封通道。通过引入氮化硅粘附促进层以及电场反转导致的双面键合,优化了阳极键合的强度。深度为50纳米、宽度为5微米、长度为1毫米的完整通道被完全且可靠地密封。基于深度为50 - 300纳米的纳米通道的结构被成功整合到纳米流体装置中,以研究由于双电层重叠导致的离子积累和耗尽效应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验