Traub Roger D, Middleton Steven J, Knöpfel Thomas, Whittington Miles A
Department of Physiology & Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, NY, USA.
Eur J Neurosci. 2008 Oct;28(8):1603-16. doi: 10.1111/j.1460-9568.2008.06477.x.
Very fast oscillations (VFO; > 75 Hz) occur transiently in vivo, in the cerebellum of mice genetically modified to model Angelman syndrome, and in a mouse model of fetal alcohol syndrome. We recently reported VFO in slices of mouse cerebellar cortex (Crus I and II of ansiform and paramedian lobules), either in association with gamma oscillations (approximately 40 Hz, evoked by nicotine) or in isolation [evoked by nicotine in combination with gamma-aminobutyric acid (GABA)(A) receptor blockade]. The experimental data suggest a role for electrical coupling between Purkinje cells (blockade of VFO by drugs reducing gap junction conductance and spikelets in some Purkinje cells); and the data suggest the specific involvement of Purkinje cell axons (because of field oscillation maxima in the granular layer). We show here that a detailed network model (1000 multicompartment Purkinje cells) replicates the experimental data when gap junctions are located on the proximal axons of Purkinje cells, provided sufficient spontaneous firing is present. Unlike other VFO models, most somatic spikelets do not correspond to axonal spikes in the parent axon, but reflect spikes in electrically coupled axons. The model predicts gating of VFO frequency by g(Na) inactivation, and experiments prolonging this inactivation time constant, with beta-pompilidotoxin, are consistent with this prediction. The model also predicts that cerebellar VFO can be explained as an electrically coupled system of axons that are not intrinsic oscillators: the electrically uncoupled cells do not individually oscillate (in the model) and axonal firing rates are much lower in the uncoupled state than in the coupled state.
非常快速的振荡(VFO;>75赫兹)在体内短暂出现,出现在经过基因改造以模拟天使综合征的小鼠的小脑中,以及胎儿酒精综合征的小鼠模型中。我们最近报道了在小鼠小脑皮质切片(袢状小叶和旁正中小叶的Crus I和II)中出现VFO,其要么与γ振荡(约40赫兹,由尼古丁诱发)相关联,要么单独出现[由尼古丁联合γ-氨基丁酸(GABA)(A)受体阻断诱发]。实验数据表明浦肯野细胞之间的电耦合起作用(通过降低缝隙连接电导的药物和一些浦肯野细胞中的锋电位簇阻断VFO);并且数据表明浦肯野细胞轴突的特定参与(因为颗粒层中的场振荡最大值)。我们在此表明,当缝隙连接位于浦肯野细胞的近端轴突上时,一个详细的网络模型(1000个多室浦肯野细胞)能够复制实验数据,前提是存在足够的自发放电。与其他VFO模型不同,大多数体细胞锋电位簇并不对应于母轴突中的轴突锋电位,而是反映电耦合轴突中的锋电位。该模型预测VFO频率受g(Na)失活的门控,并且用β-蓬皮利多毒素延长这种失活时间常数的实验与这一预测一致。该模型还预测小脑VFO可以解释为一个不是固有振荡器的轴突电耦合系统:电未耦合的细胞在模型中不会单独振荡,并且在未耦合状态下轴突放电率比在耦合状态下低得多。