Rebollo Beatriz, Telenczuk Bartosz, Navarro-Guzman Alvaro, Destexhe Alain, Sanchez-Vives Maria V
Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), Institut des Neurosciences, Gif sur Yvette, France.
Sci Adv. 2021 Mar 3;7(10). doi: 10.1126/sciadv.abc7772. Print 2021 Mar.
Neurons synaptically interacting in a conductive medium generate extracellular endogenous electric fields (EFs) that reciprocally affect membrane potential. Exogenous EFs modulate neuronal activity, and their clinical applications are being profusely explored. However, whether endogenous EFs contribute to network synchronization remains unclear. We analyzed spontaneously generated slow-wave activity in the cerebral cortex network in vitro, which allowed us to distinguish synaptic from nonsynaptic mechanisms of activity propagation and synchronization. Slow oscillations generated EFs that propagated independently of synaptic transmission. We demonstrate that cortical oscillations modulate spontaneous rhythmic activity of neighboring synaptically disconnected cortical columns if layers are aligned. We provide experimental evidence that these EF-mediated effects are compatible with electric dipoles. With a model of interacting dipoles, we reproduce the experimental measurements and predict that endogenous EF-mediated synchronizing effects should be relevant in the brain. Thus, experiments and models suggest that electric-dipole interactions contribute to synchronization of neighboring cortical columns.
在传导介质中通过突触相互作用的神经元会产生细胞外内源性电场(EFs),这些电场会相互影响膜电位。外源性电场调节神经元活动,并且其临床应用正在被大量探索。然而,内源性电场是否有助于网络同步仍不清楚。我们分析了体外大脑皮层网络中自发产生的慢波活动,这使我们能够区分活动传播和同步的突触机制与非突触机制。慢振荡产生的电场独立于突触传递进行传播。我们证明,如果各层对齐,皮层振荡会调节相邻的突触断开的皮层柱的自发节律活动。我们提供了实验证据,表明这些电场介导的效应与电偶极子是兼容的。通过相互作用偶极子模型,我们重现了实验测量结果,并预测内源性电场介导的同步效应在大脑中应该是相关的。因此,实验和模型表明,电偶极子相互作用有助于相邻皮层柱的同步。