Finkenstädt Bärbel, Heron Elizabeth A, Komorowski Michal, Edwards Kieron, Tang Sanyi, Harper Claire V, Davis Julian R E, White Michael R H, Millar Andrew J, Rand David A
Department of Statistics, University of Warwick, Coventry CV47AL, UK.
Bioinformatics. 2008 Dec 15;24(24):2901-7. doi: 10.1093/bioinformatics/btn562. Epub 2008 Oct 30.
Promoter-driven reporter genes, notably luciferase and green fluorescent protein, provide a tool for the generation of a vast array of time-course data sets from living cells and organisms. The aim of this study is to introduce a modeling framework based on stochastic differential equations (SDEs) and ordinary differential equations (ODEs) that addresses the problem of reconstructing transcription time-course profiles and associated degradation rates. The dynamical model is embedded into a Bayesian framework and inference is performed using Markov chain Monte Carlo algorithms.
We present three case studies where the methodology is used to reconstruct unobserved transcription profiles and to estimate associated degradation rates. We discuss advantages and limits of fitting either SDEs ODEs and address the problem of parameter identifiability when model variables are unobserved. We also suggest functional forms, such as on/off switches and stimulus response functions to model transcriptional dynamics and present results of fitting these to experimental data.
启动子驱动的报告基因,尤其是荧光素酶和绿色荧光蛋白,为从活细胞和生物体中生成大量时间进程数据集提供了一种工具。本研究的目的是引入一个基于随机微分方程(SDE)和常微分方程(ODE)的建模框架,以解决转录时间进程曲线及相关降解速率的重建问题。该动力学模型被嵌入到贝叶斯框架中,并使用马尔可夫链蒙特卡罗算法进行推理。
我们展示了三个案例研究,其中该方法用于重建未观察到的转录谱并估计相关的降解速率。我们讨论了拟合SDE或ODE的优点和局限性,并解决了模型变量未观察到时的参数可识别性问题。我们还提出了诸如开/关开关和刺激响应函数等函数形式来模拟转录动力学,并展示了将这些函数形式拟合到实验数据的结果。