Suppr超能文献

基于粒子马尔可夫链蒙特卡罗的随机生化网络模型的贝叶斯参数推断。

Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo.

机构信息

School of Mathematics and Statistics, Newcastle University, Merz Court, Newcastle upon Tyne NE1 7RU, UK.

出版信息

Interface Focus. 2011 Dec 6;1(6):807-20. doi: 10.1098/rsfs.2011.0047. Epub 2011 Sep 29.

Abstract

Computational systems biology is concerned with the development of detailed mechanistic models of biological processes. Such models are often stochastic and analytically intractable, containing uncertain parameters that must be estimated from time course data. In this article, we consider the task of inferring the parameters of a stochastic kinetic model defined as a Markov (jump) process. Inference for the parameters of complex nonlinear multivariate stochastic process models is a challenging problem, but we find here that algorithms based on particle Markov chain Monte Carlo turn out to be a very effective computationally intensive approach to the problem. Approximations to the inferential model based on stochastic differential equations (SDEs) are considered, as well as improvements to the inference scheme that exploit the SDE structure. We apply the methodology to a Lotka-Volterra system and a prokaryotic auto-regulatory network.

摘要

计算系统生物学关注的是开发生物过程的详细机械模型。这些模型通常是随机的,难以进行分析,包含必须从时间序列数据中估计的不确定参数。在本文中,我们考虑推断随机动力学模型参数的任务,该模型定义为马尔可夫(跳跃)过程。对于复杂非线性多变量随机过程模型参数的推断是一个具有挑战性的问题,但我们在这里发现,基于粒子马尔可夫链蒙特卡罗的算法是解决该问题的非常有效的计算密集型方法。我们还考虑了基于随机微分方程 (SDE) 的推理模型的近似值,以及利用 SDE 结构改进推理方案。我们将该方法应用于 Lotka-Volterra 系统和原核自动调节网络。

相似文献

7
Likelihood free inference for Markov processes: a comparison.马尔可夫过程的无似然推断:比较
Stat Appl Genet Mol Biol. 2015 Apr;14(2):189-209. doi: 10.1515/sagmb-2014-0072.

引用本文的文献

3
Anomaly Detection in Large-Scale Networks With Latent Space Models.基于潜在空间模型的大规模网络异常检测
Technometrics. 2022;64(2):241-252. doi: 10.1080/00401706.2021.1952900. Epub 2021 Dec 16.
4
Mathematical modeling the order of driver gene mutations in colorectal cancer.数学建模结直肠癌中驱动基因突变的顺序。
PLoS Comput Biol. 2023 Jun 27;19(6):e1011225. doi: 10.1371/journal.pcbi.1011225. eCollection 2023 Jun.
6
Bayesian parameter estimation for dynamical models in systems biology.系统生物学中动态模型的贝叶斯参数估计。
PLoS Comput Biol. 2022 Oct 21;18(10):e1010651. doi: 10.1371/journal.pcbi.1010651. eCollection 2022 Oct.

本文引用的文献

1
Statistical inference for noisy nonlinear ecological dynamic systems.噪声非线性生态动态系统的统计推断。
Nature. 2010 Aug 26;466(7310):1102-4. doi: 10.1038/nature09319. Epub 2010 Aug 11.
4
Inference for nonlinear dynamical systems.非线性动力系统的推断
Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18438-43. doi: 10.1073/pnas.0603181103. Epub 2006 Nov 22.
6
Markov chain Monte Carlo without likelihoods.无似然马尔可夫链蒙特卡罗方法。
Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15324-8. doi: 10.1073/pnas.0306899100. Epub 2003 Dec 8.
8
Approximate Bayesian computation in population genetics.群体遗传学中的近似贝叶斯计算
Genetics. 2002 Dec;162(4):2025-35. doi: 10.1093/genetics/162.4.2025.
9
Computational systems biology.计算系统生物学
Nature. 2002 Nov 14;420(6912):206-10. doi: 10.1038/nature01254.
10
Stochastic gene expression in a single cell.单细胞中的随机基因表达。
Science. 2002 Aug 16;297(5584):1183-6. doi: 10.1126/science.1070919.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验