Suppr超能文献

黄嘌呤氧化酶会导致机械通气引起的膈肌氧化应激和收缩功能障碍。

Xanthine oxidase contributes to mechanical ventilation-induced diaphragmatic oxidative stress and contractile dysfunction.

作者信息

Whidden Melissa A, McClung Joseph M, Falk Darin J, Hudson Matthew B, Smuder Ashley J, Nelson W Bradley, Powers Scott K

机构信息

Dept. of Applied Physiology and Kinesiology, Univ. of Florida,Gainesville, FL 32611, USA.

出版信息

J Appl Physiol (1985). 2009 Feb;106(2):385-94. doi: 10.1152/japplphysiol.91106.2008. Epub 2008 Oct 30.

Abstract

Respiratory muscle weakness resulting from both diaphragmatic contractile dysfunction and atrophy has been hypothesized to contribute to the weaning difficulties associated with prolonged mechanical ventilation (MV). While it is clear that oxidative injury contributes to MV-induced diaphragmatic weakness, the source(s) of oxidants in the diaphragm during MV remain unknown. These experiments tested the hypothesis that xanthine oxidase (XO) contributes to MV-induced oxidant production in the rat diaphragm and that oxypurinol, a XO inhibitor, would attenuate MV-induced diaphragmatic oxidative stress, contractile dysfunction, and atrophy. Adult female Sprague-Dawley rats were randomly assigned to one of six experimental groups: 1) control, 2) control with oxypurinol, 3) 12 h of MV, 4) 12 h of MV with oxypurinol, 5) 18 h of MV, or 6) 18 h of MV with oxypurinol. XO activity was significantly elevated in the diaphragm after MV, and oxypurinol administration inhibited this activity and provided protection against MV-induced oxidative stress and contractile dysfunction. Specifically, oxypurinol treatment partially attenuated both protein oxidation and lipid peroxidation in the diaphragm during MV. Further, XO inhibition retarded MV-induced diaphragmatic contractile dysfunction at stimulation frequencies >60 Hz. Collectively, these results suggest that oxidant production by XO contributes to MV-induced oxidative injury and contractile dysfunction in the diaphragm. Nonetheless, the failure of XO inhibition to completely prevent MV-induced diaphragmatic oxidative damage suggests that other sources of oxidant production are active in the diaphragm during prolonged MV.

摘要

膈肌收缩功能障碍和萎缩导致的呼吸肌无力被认为是导致长期机械通气(MV)相关撤机困难的原因。虽然氧化损伤导致MV诱导的膈肌无力这一点很明确,但MV期间膈肌中氧化剂的来源仍不清楚。这些实验检验了以下假设:黄嘌呤氧化酶(XO)促成MV诱导的大鼠膈肌氧化剂生成,而XO抑制剂氧嘌呤醇将减轻MV诱导的膈肌氧化应激、收缩功能障碍和萎缩。成年雌性Sprague-Dawley大鼠被随机分配到六个实验组之一:1)对照组,2)氧嘌呤醇对照组,3)12小时MV组,4)12小时MV加氧嘌呤醇组,5)18小时MV组,或6)18小时MV加氧嘌呤醇组。MV后膈肌中的XO活性显著升高,给予氧嘌呤醇可抑制该活性,并预防MV诱导的氧化应激和收缩功能障碍。具体而言,氧嘌呤醇治疗部分减轻了MV期间膈肌中的蛋白质氧化和脂质过氧化。此外,XO抑制在刺激频率>60Hz时延缓了MV诱导的膈肌收缩功能障碍。总体而言,这些结果表明XO产生的氧化剂促成了MV诱导的膈肌氧化损伤和收缩功能障碍。尽管如此,XO抑制未能完全预防MV诱导的膈肌氧化损伤,这表明在长期MV期间,膈肌中还有其他氧化剂产生来源。

相似文献

1
Xanthine oxidase contributes to mechanical ventilation-induced diaphragmatic oxidative stress and contractile dysfunction.
J Appl Physiol (1985). 2009 Feb;106(2):385-94. doi: 10.1152/japplphysiol.91106.2008. Epub 2008 Oct 30.
3
Oxidative stress is required for mechanical ventilation-induced protease activation in the diaphragm.
J Appl Physiol (1985). 2010 May;108(5):1376-82. doi: 10.1152/japplphysiol.00098.2010. Epub 2010 Mar 4.
4
Mitochondria-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness.
Crit Care Med. 2011 Jul;39(7):1749-59. doi: 10.1097/CCM.0b013e3182190b62.
5
AT1 receptor blocker losartan protects against mechanical ventilation-induced diaphragmatic dysfunction.
J Appl Physiol (1985). 2015 Nov 15;119(10):1033-41. doi: 10.1152/japplphysiol.00237.2015. Epub 2015 Sep 10.
7
Angiotensin 1-7 protects against ventilator-induced diaphragm dysfunction.
Clin Transl Sci. 2021 Jul;14(4):1512-1523. doi: 10.1111/cts.13015. Epub 2021 May 1.
9
Mechanical ventilation induces diaphragmatic mitochondrial dysfunction and increased oxidant production.
Free Radic Biol Med. 2009 Mar 15;46(6):842-50. doi: 10.1016/j.freeradbiomed.2009.01.002. Epub 2009 Jan 13.
10
Dietary inhibition of xanthine oxidase attenuates radiation-induced endothelial dysfunction in rat aorta.
J Appl Physiol (1985). 2010 May;108(5):1250-8. doi: 10.1152/japplphysiol.00946.2009. Epub 2010 Feb 18.

引用本文的文献

2
Uric acid formation is driven by crosstalk between skeletal muscle and other cell types.
JCI Insight. 2024 Jan 23;9(2):e171815. doi: 10.1172/jci.insight.171815.
3
ROCK1 activates mitochondrial fission leading to oxidative stress and muscle atrophy.
bioRxiv. 2023 Oct 22:2023.10.22.563469. doi: 10.1101/2023.10.22.563469.
4
Redox signaling regulates skeletal muscle remodeling in response to exercise and prolonged inactivity.
Redox Biol. 2022 Aug;54:102374. doi: 10.1016/j.redox.2022.102374. Epub 2022 Jun 17.
5
Melatonin Reduces Oxidative Stress in the Right Ventricle of Newborn Sheep Gestated under Chronic Hypoxia.
Antioxidants (Basel). 2021 Oct 22;10(11):1658. doi: 10.3390/antiox10111658.
6
AMP deamination is sufficient to replicate an atrophy-like metabolic phenotype in skeletal muscle.
Metabolism. 2021 Oct;123:154864. doi: 10.1016/j.metabol.2021.154864. Epub 2021 Aug 13.
8
Angiotensin 1-7 protects against ventilator-induced diaphragm dysfunction.
Clin Transl Sci. 2021 Jul;14(4):1512-1523. doi: 10.1111/cts.13015. Epub 2021 May 1.
10
Disturbances in Calcium Homeostasis Promotes Skeletal Muscle Atrophy: Lessons From Ventilator-Induced Diaphragm Wasting.
Front Physiol. 2020 Dec 17;11:615351. doi: 10.3389/fphys.2020.615351. eCollection 2020.

本文引用的文献

1
Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans.
N Engl J Med. 2008 Mar 27;358(13):1327-35. doi: 10.1056/NEJMoa070447.
2
Redox regulation of diaphragm proteolysis during mechanical ventilation.
Am J Physiol Regul Integr Comp Physiol. 2008 May;294(5):R1608-17. doi: 10.1152/ajpregu.00044.2008. Epub 2008 Mar 5.
3
Free radicals and muscle fatigue: Of ROS, canaries, and the IOC.
Free Radic Biol Med. 2008 Jan 15;44(2):169-79. doi: 10.1016/j.freeradbiomed.2007.03.002. Epub 2007 Mar 12.
5
Leupeptin inhibits ventilator-induced diaphragm dysfunction in rats.
Am J Respir Crit Care Med. 2007 Jun 1;175(11):1134-8. doi: 10.1164/rccm.200609-1342OC. Epub 2007 Mar 22.
6
Prevention of unloading-induced atrophy by vitamin E supplementation: links between oxidative stress and soleus muscle proteolysis?
Free Radic Biol Med. 2007 Mar 1;42(5):627-35. doi: 10.1016/j.freeradbiomed.2006.12.001. Epub 2006 Dec 15.
7
Oxidative stress and disuse muscle atrophy.
J Appl Physiol (1985). 2007 Jun;102(6):2389-97. doi: 10.1152/japplphysiol.01202.2006. Epub 2007 Feb 8.
8
NADPH oxidase inhibition prevents cocaine-induced up-regulation of xanthine oxidoreductase and cardiac dysfunction.
J Mol Cell Cardiol. 2007 Feb;42(2):326-32. doi: 10.1016/j.yjmcc.2006.11.011. Epub 2007 Jan 10.
9
Resistance exercise, muscle loading/unloading and the control of muscle mass.
Essays Biochem. 2006;42:61-74. doi: 10.1042/bse0420061.
10
Caspase-3 regulation of diaphragm myonuclear domain during mechanical ventilation-induced atrophy.
Am J Respir Crit Care Med. 2007 Jan 15;175(2):150-9. doi: 10.1164/rccm.200601-142OC. Epub 2006 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验