Suppr超能文献

生命、信息、熵与时间:语义传承的载体

Life, Information, Entropy, and Time: Vehicles for Semantic Inheritance.

作者信息

Crofts Antony R

机构信息

Department of Biochemistry, 419 Roger Adams Laboratory, 600 S. Mathews Avenue, University of Illinois at Urbana-Champaign, Urbana, IL 61801; E-mail:

出版信息

Complexity. 2007;13(1):14-50. doi: 10.1002/cplx.20180.

Abstract

Attempts to understand how information content can be included in an accounting of the energy flux of the biosphere have led to the conclusion that, in information transmission, one component, the semantic content, or "the meaning of the message," adds no thermodynamic burden over and above costs arising from coding, transmission and translation. In biology, semantic content has two major roles. For all life forms, the message of the genotype encoded in DNA specifies the phenotype, and hence the organism that is tested against the real world through the mechanisms of Darwinian evolution. For human beings, communication through language and similar abstractions provides an additional supra-phenotypic vehicle for semantic inheritance, which supports the cultural heritages around which civilizations revolve. The following three postulates provide the basis for discussion of a number of themes that demonstrate some important consequences. (i) Information transmission through either pathway has thermodynamic components associated with data storage and transmission. (ii) The semantic content adds no additional thermodynamic cost. (iii) For all semantic exchange, meaning is accessible only through translation and interpretation, and has a value only in context. (1) For both pathways of semantic inheritance, translational and copying machineries are imperfect. As a consequence both pathways are subject to mutation and to evolutionary pressure by selection. Recognition of semantic content as a common component allows an understanding of the relationship between genes and memes, and a reformulation of Universal Darwinism. (2) The emergent properties of life are dependent on a processing of semantic content. The translational steps allow amplification in complexity through combinatorial possibilities in space and time. Amplification depends on the increased potential for complexity opened by 3D interaction specificity of proteins, and on the selection of useful variants by evolution. The initial interpretational steps include protein synthesis, molecular recognition, and catalytic potential that facilitate structural and functional roles. Combinatorial possibilities are extended through interactions of increasing complexity in the temporal dimension. (3) All living things show a behavior that indicates awareness of time, or chronognosis. The ∼4 billion years of biological evolution have given rise to forms with increasing sophistication in sensory adaptation. This has been linked to the development of an increasing chronognostic range, and an associated increase in combinatorial complexity. (4) Development of a modern human phenotype and the ability to communicate through language, led to the development of archival storage, and invention of the basic skills, institutions and mechanisms that allowed the evolution of modern civilizations. Combinatorial amplification at the supra-phenotypical level arose from the invention of syntax, grammar, numbers, and the subsequent developments of abstraction in writing, algorithms, etc. The translational machineries of the human mind, the "mutation" of ideas therein, and the "conversations" of our social intercourse, have allowed a limited set of symbolic descriptors to evolve into an exponentially expanding semantic heritage. (5) The three postulates above open interesting epistemological questions. An understanding of topics such dualism, the élan vital, the status of hypothesis in science, memetics, the nature of consciousness, the role of semantic processing in the survival of societies, and Popper's three worlds, require recognition of an insubstantial component. By recognizing a necessary linkage between semantic content and a physical machinery, we can bring these perennial problems into the framework of a realistic philosophy. It is suggested, following Popper, that the ∼4 billion years of evolution of the biosphere represents an exploration of the nature of reality at the physicochemical level, which, together with the conscious extension of this exploration through science and culture, provides a firm epistemological underpinning for such a philosophy.

摘要

尝试理解如何将信息内容纳入对生物圈能量通量的核算之中,这一努力已得出如下结论:在信息传递过程中,一个组成部分,即语义内容或“信息的意义”,除了编码、传输和翻译所产生的成本之外,不会增加任何热力学负担。在生物学中,语义内容具有两个主要作用。对于所有生命形式而言,编码于DNA中的基因型信息决定了表型,进而决定了通过达尔文进化机制在现实世界中接受检验的生物体。对于人类来说,通过语言及类似抽象形式进行的交流为语义传承提供了一种额外的超表型载体,这种载体支撑着文明所围绕的文化遗产。以下三个假设为讨论一系列主题提供了基础,这些主题展示了一些重要的结果。(i)通过任何一种途径进行的信息传递都具有与数据存储和传输相关的热力学组成部分。(ii)语义内容不会增加额外的热力学成本。(iii)对于所有语义交换而言,意义仅通过翻译和解释才能获取,并且仅在特定语境中才有价值。(1)对于语义传承的两种途径,即翻译和复制机制都是不完美的。因此,这两种途径都容易发生突变,并受到选择所带来的进化压力。将语义内容视为一个共同组成部分,有助于理解基因与文化基因之间的关系,并对广义达尔文主义进行重新表述。(2)生命的涌现特性依赖于对语义内容的处理。翻译步骤通过时空上的组合可能性实现了复杂性的放大。放大取决于蛋白质三维相互作用特异性所开启的增加的复杂性潜力,以及进化对有用变体的选择。最初的解释步骤包括蛋白质合成、分子识别以及促进结构和功能作用的催化潜力。组合可能性通过时间维度上日益复杂的相互作用得以扩展。(3)所有生物都表现出一种表明对时间有感知的行为,即时间认知。约40亿年的生物进化产生了在感官适应方面日益复杂的形式。这与不断扩大的时间认知范围以及相关的组合复杂性增加有关。(4)现代人类表型的发展以及通过语言进行交流的能力,导致了档案存储的发展,以及基本技能、制度和机制的发明,这些使得现代文明得以进化。超表型层面的组合放大源于句法、语法、数字的发明,以及随后在书写、算法等方面抽象化的发展。人类思维的翻译机制、其中观念的“突变”以及我们社会交往中的“对话”,使得一组有限的符号描述符演变成了呈指数级扩展的语义遗产。(5)上述三个假设引发了有趣的认识论问题。对诸如二元论、生命冲动、科学假设的地位、文化基因学、意识的本质、语义处理在社会生存中的作用以及波普尔的三个世界等主题的理解,需要认识到一个非实体性的组成部分。通过认识到语义内容与物理机制之间的必要联系,我们可以将这些长期存在的问题纳入一种现实哲学的框架之中。按照波普尔的观点,有人提出,约40亿年的生物圈进化代表了在物理化学层面上对现实本质的探索,而通过科学和文化对这一探索的有意识扩展,为这样一种哲学提供了坚实的认识论基础。

引用本文的文献

2
Geometric entropy of plant leaves: A measure of morphological complexity.植物叶片的几何熵:形态复杂性的度量。
PLoS One. 2024 Jan 2;19(1):e0293596. doi: 10.1371/journal.pone.0293596. eCollection 2024.
4
Art Value Creation and Destruction.艺术价值的创造与毁灭。
Integr Psychol Behav Sci. 2023 Sep;57(3):796-839. doi: 10.1007/s12124-022-09748-7. Epub 2023 Jan 3.
5
Thermal Resonance and Cell Behavior.热共振与细胞行为。
Entropy (Basel). 2020 Jul 16;22(7):774. doi: 10.3390/e22070774.

本文引用的文献

2
Tagging mammalian transcription complexity.标记哺乳动物转录复杂性。
Trends Genet. 2006 Sep;22(9):501-10. doi: 10.1016/j.tig.2006.07.003. Epub 2006 Jul 21.
3
Collective evolution and the genetic code.集体进化与遗传密码。
Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10696-701. doi: 10.1073/pnas.0603780103. Epub 2006 Jul 3.
4
Commentary on: "Photosynthesis and negative entropy production" by Jennings and coworkers.对詹宁斯及其同事所著《光合作用与负熵产生》的评论
Biochim Biophys Acta. 2006 Nov;1757(11):1453-9; author reply 1460-2. doi: 10.1016/j.bbabio.2006.05.017. Epub 2006 May 17.
6
Mental imagery for a conversational robot.用于对话机器人的心理意象。
IEEE Trans Syst Man Cybern B Cybern. 2004 Jun;34(3):1374-83. doi: 10.1109/tsmcb.2004.823327.
7
Diversity in chemotaxis mechanisms among the bacteria and archaea.细菌和古细菌趋化机制的多样性。
Microbiol Mol Biol Rev. 2004 Jun;68(2):301-19. doi: 10.1128/MMBR.68.2.301-319.2004.
8
A new biology for a new century.新世纪的新生物学。
Microbiol Mol Biol Rev. 2004 Jun;68(2):173-86. doi: 10.1128/MMBR.68.2.173-186.2004.
10
Timekeeping in bacteria: the cyanobacterial circadian clock.细菌中的计时:蓝藻生物钟
Curr Opin Microbiol. 2003 Dec;6(6):535-40. doi: 10.1016/j.mib.2003.10.012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验