Bisht N C, Gupta V, Ramchiary N, Sodhi Y S, Mukhopadhyay A, Arumugam N, Pental D, Pradhan A K
Centre for Genetic Manipulation of Crop Plants, Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110 021, India.
Theor Appl Genet. 2009 Feb;118(3):413-21. doi: 10.1007/s00122-008-0907-z. Epub 2008 Oct 21.
Fine mapping of six seed glucosinolate QTL (J2Gsl1, J3Gsl2, J9Gsl3, J16Gsl4, J17Gsl5 and J3Gsl6) (Ramchiary et al. in Theor Appl Genet 116:77-85, 2007a) was undertaken by the candidate gene approach. Based on the DNA sequences from Arabidopsis and Brassica oleracea for the different genes involved in the aliphatic glucosinolate biosynthesis, candidate genes were amplified and sequenced from high to low glucosinolate Brassica juncea lines Varuna and Heera, respectively. Of the 20 paralogues identified, 17 paralogues belonging to six gene families were mapped to 12 of the 18 linkage groups of B. juncea genome. Co-mapping of candidate genes with glucosinolate QTL revealed that the candidate gene BjuA.GSL-ELONG.a mapped to the QTL interval of J2Gsl1, BjuA.GSL-ELONG.c, BjuA.GSL-ELONG.d and BjuA.Myb28.a mapped to the QTL interval of J3Gsl2, BjuA.GSL-ALK.a mapped to the QTL interval of J3Gsl6 and BjuB.Myb28.a mapped to the QTL interval of J17Gsl5. The QTL J9Gsl3 and J16Gsl4 did not correspond to any of the mapped candidate genes. The functionality and contribution of different candidate genes/QTL was assessed by allelic variation study using phenotypic data of 785 BC(4)DH lines. It was observed that BjuA.Myb28.a and J9Gsl3 contributed significantly to the base level glucosinolate production while J16Gsl4, probably GSL-PRO, BjuA.GSL-ELONG.a and BjuA.GSL-ELONG.c contributed to the C3, C4 and C5 elongation pathways, respectively. Three A genome QTL: J2Gsl1harbouring BjuA.GSL-ELONG.a, J3Gsl2 harbouring both BjuA.GSL-ELONG.c and BjuA.Myb28.a and J9Gsl3, possibly the 'Bronowski genes', were identified as most important loci for breeding low glucosinolate B. juncea. We observed two-step genetic control of seed glucosinolate in B. juncea mainly effected by these three A genome QTL. This study, therefore, provides clues to the genetic mechanism of 'Bronowski genes' controlling the glucosinolate trait and also provides efficient markers for marker-assisted introgression of low glucosinolate trait in B. juncea.
采用候选基因法对6个种子硫代葡萄糖苷QTL(J2Gsl1、J3Gsl2、J9Gsl3、J16Gsl4、J17Gsl5和J3Gsl6)进行精细定位(Ramchiary等人,《理论与应用遗传学》,2007年a卷,第116期,第77 - 85页)。基于拟南芥和甘蓝中参与脂肪族硫代葡萄糖苷生物合成的不同基因的DNA序列,分别从高硫代葡萄糖苷和低硫代葡萄糖苷的芥菜型油菜品种Varuna和Heera中扩增并测序候选基因。在鉴定出的20个旁系同源物中,属于6个基因家族的17个旁系同源物被定位到芥菜型油菜基因组18个连锁群中的12个上。候选基因与硫代葡萄糖苷QTL的共定位表明,候选基因BjuA.GSL - ELONG.a定位到J2Gsl1的QTL区间,BjuA.GSL - ELONG.c、BjuA.GSL - ELONG.d和BjuA.Myb28.a定位到J3Gsl2的QTL区间,BjuA.GSL - ALK.a定位到J3Gsl6的QTL区间,BjuB.Myb28.a定位到J17Gsl5的QTL区间。QTL J9Gsl3和J16Gsl4与任何已定位的候选基因均不对应。利用785个BC(4)DH系的表型数据,通过等位基因变异研究评估了不同候选基因/QTL的功能和贡献。结果发现,BjuA.Myb28.a和J9Gsl3对硫代葡萄糖苷的基础产量有显著贡献,而J16Gsl4(可能是GSL - PRO)、BjuA.GSL - ELONG.a和BjuA.GSL - ELONG.c分别对C3、C4和C5延伸途径有贡献。三个A基因组QTL:含有BjuA.GSL - ELONG.a的J2Gsl1、同时含有BjuA.GSL - ELONG.c和BjuA.Myb28.a的J3Gsl2以及可能的“Bronowski基因”J9Gsl3,被确定为培育低硫代葡萄糖苷芥菜型油菜的最重要位点。我们观察到芥菜型油菜种子硫代葡萄糖苷的两步遗传控制主要受这三个A基因组QTL影响。因此,本研究为“Bronowski基因”控制硫代葡萄糖苷性状的遗传机制提供了线索,也为芥菜型油菜低硫代葡萄糖苷性状的标记辅助导入提供了有效的标记。