Bloy Luke, Ingalhalikar Madhura, Eavani Harini, Roberts Timothy P L, Schultz Robert T, Verma Ragini
Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, USA.
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):234-41. doi: 10.1007/978-3-642-23629-7_29.
The paper presents a method for creating abnormality classifiers from high angular resolution diffusion imaging (HARDI) data. We utilized the fiber orientation distribution (FOD) diffusion model to represent the local WM architecture of each subject. The FOD images are then spatially normalized to a common template using a non-linear registration technique. Regions of homogeneous white matter architecture (ROIs) are determined by applying a parcellation algorithm to the population average FOD image. Orientation invariant features of each ROI's mean FOD are determined and concatenated into a feature vector to represent each subject. Principal component analysis (PCA) was used for dimensionality reduction and a linear support vector machine (SVM) classifier is trained on the PCA coefficients. The classifier assigns each test subject a probabilistic score indicating the likelihood of belonging to the patient group. The method was validated using a 5 fold validation scheme on a population containing autism spectrum disorder (ASD) patients and typically developing (TD) controls. A clear distinction between ASD patients and controls was obtained with a 77% accuracy.
本文提出了一种从高角分辨率扩散成像(HARDI)数据创建异常分类器的方法。我们利用纤维方向分布(FOD)扩散模型来表示每个受试者的局部白质结构。然后使用非线性配准技术将FOD图像空间归一化到一个共同模板。通过对总体平均FOD图像应用分割算法来确定均匀白质结构区域(ROI)。确定每个ROI平均FOD的方向不变特征,并将其连接成一个特征向量来表示每个受试者。主成分分析(PCA)用于降维,并在PCA系数上训练线性支持向量机(SVM)分类器。该分类器为每个测试受试者分配一个概率分数,表明其属于患者组的可能性。该方法在一个包含自闭症谱系障碍(ASD)患者和典型发育(TD)对照的群体上使用5折验证方案进行了验证。在ASD患者和对照之间获得了明显区分,准确率为77%。