Lashkari Danial, Vul Ed, Kanwisher Nancy, Golland Polina
Computer Science and Artificial Intelligence Laboratory, MIT, USA.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):1016-24. doi: 10.1007/978-3-540-85988-8_121.
We present a method for discovering patterns of activation observed through fMIRI in experiments with multiple stimuli/tasks. We introduce an explicit parameterization for the profiles of activation and represent fMRI time courses as such profiles using linear regression estimates. Working in the space of activation profiles, we design a mixture model that finds the major activation patterns along with their localization maps and derive an algorithm for fitting the model to the fMRI data. The method enables functional group analysis independent of spatial correspondence among subjects. We validate this model in the context of category selectivity in the visual cortex, demonstrating good agreement with prior findings based on hypothesis-driven methods.
我们提出了一种在多刺激/任务实验中通过功能磁共振成像(fMIRI)发现激活模式的方法。我们为激活曲线引入了一种显式参数化,并使用线性回归估计将功能磁共振成像时间历程表示为这样的曲线。在激活曲线空间中,我们设计了一个混合模型,该模型可找到主要的激活模式及其定位图,并推导了一种将该模型拟合到功能磁共振成像数据的算法。该方法能够进行独立于受试者之间空间对应关系的功能组分析。我们在视觉皮层的类别选择性背景下验证了该模型,结果表明与基于假设驱动方法的先前发现具有良好的一致性。