Keith A D, Snipes W, Chapman D
Biochemistry. 1977 Feb 22;16(4):634-41. doi: 10.1021/bi00623a013.
Water-soluble spin labels were used to study dimyristoyllecithin (DML) phospholipid multilayers. Previous studies report that there is a "bound" water region associated with dimyristoyllecithin containing about 10 molecules of water per phospholipid, a "trapped" water region located between the lamellae containing approximately 11 molecules per phospholipid, and a "ftion show that certain water-soluble spin-label mol-cules have their motional properties differentially modified by these three water environements. Furthermore, the labels also reveal the onset of lipid-phase transitions even though they have high water solubility. A phosphate-containing spin label demonstrated strong an isotropic motion in the lipid-water system above the phase transition but not below. The addition of cholesterol to the DML-water system removed the anisotropic motion of 2,2,6,6-tetramehtyl-4-phosphopiperidine-N-oxyl (Tempophosphate) and obscured the detection bound, trapped, and free water. In addition to the change-charge interactions between Tempophosphate and DML, two other spin labels were used both in the charged and uncharged states. 2,2,6,6-Tetramethyl-4-aminopiperidine-N-oxyl (Tempamine) in the charged state showed extremely strong anisotropic motion, presumably due to the interaction between the charged amine and the phosphate group of DML. When only partially charged, Tempamine showed much less anisotropic motion. PCA was analyzed at pH values where the carboxyl group was protonated and unprotonated. The resulting interaction was different at the two pH values. These water-soluble spin labels mimic ionic or nonionic solutes. Upon freezing, the spin labels are shown to be expelled from the ice regions into the remaining aqueous regions. The usefulness of this approach in studying solute behavior when freezing occurs and potential studies involving aqueous regions of cytoplasm are considered.
水溶性自旋标记物被用于研究二肉豆蔻酰卵磷脂(DML)磷脂多层膜。先前的研究报道,存在一个与二肉豆蔻酰卵磷脂相关的“结合”水区域,每个磷脂含有约10个水分子;一个位于片层之间的“截留”水区域,每个磷脂大约含有11个分子;以及一个“自由”水区域。研究表明,某些水溶性自旋标记分子的运动特性会被这三种水环境以不同方式改变。此外,尽管这些标记物具有高水溶性,但它们也能揭示脂质相转变的开始。一种含磷酸盐的自旋标记物在相转变温度以上的脂质 - 水体系中表现出强烈的各向异性运动,而在相转变温度以下则没有。向DML - 水体系中添加胆固醇消除了2,2,6,6 - 四甲基 - 4 - 磷哌啶 - N - 氧基(Tempophosphate)的各向异性运动,并掩盖了对结合水、截留水和自由水的检测。除了Tempophosphate与DML之间的电荷变化相互作用外,还使用了另外两种处于带电和不带电状态的自旋标记物。带电状态下的2,2,6,6 - 四甲基 - 4 - 氨基哌啶 - N - 氧基(Tempamine)表现出极强的各向异性运动,推测是由于带电胺与DML的磷酸基团之间的相互作用。当仅部分带电时,Tempamine表现出的各向异性运动要少得多。在羧基质子化和未质子化的pH值下对PCA进行了分析。在这两个pH值下产生的相互作用不同。这些水溶性自旋标记物模拟离子或非离子溶质。冷冻时,自旋标记物会从冰区被排到剩余的水相中。考虑到这种方法在研究冷冻时溶质行为以及涉及细胞质水相区域的潜在研究中的有用性。