Suppr超能文献

禾谷镰刀菌2-羟基脂肪酸N-酰基-Δ3(E)-去饱和酶的鉴定及功能表征

Identification and functional characterization of the 2-hydroxy fatty N-acyl-Delta3(E)-desaturase from Fusarium graminearum.

作者信息

Zaüner Simone, Zähringer Ulrich, Lindner Buko, Warnecke Dirk, Sperling Petra

机构信息

Biocenter Klein Flottbek and Botanical Garden, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany.

出版信息

J Biol Chem. 2008 Dec 26;283(52):36734-42. doi: 10.1074/jbc.M807264200. Epub 2008 Nov 3.

Abstract

Delta3(E)-unsaturated fatty acids are characteristic components of glycosylceramides from some fungi, including also human- and plant-pathogenic species. The function and genetic basis for this unsaturation is unknown. For Fusarium graminearum, which is pathogenic to grasses and cereals, we could show that the level of Delta3-unsaturation of glucosylceramide (GlcCer) was highest at low temperatures and decreased when the fungus was grown above 28 degrees C. With a bioinformatics approach, we identified a new family of polypeptides carrying the histidine box motifs characteristic for membrane-bound desaturases. One of the corresponding genes was functionally characterized as a sphingolipid-Delta3(E)-desaturase. Deletion of the candidate gene in F. graminearum resulted in loss of the Delta3(E)-double bond in the fatty acyl moiety of GlcCer. Heterologous expression of the corresponding cDNA from F. graminearum in the yeast Pichia pastoris led to the formation of Delta3(E)-unsaturated GlcCer.

摘要

Δ3(E)-不饱和脂肪酸是一些真菌糖基神经酰胺的特征性成分,这些真菌包括人类和植物病原菌。这种不饱和度的功能和遗传基础尚不清楚。对于对禾本科植物和谷物致病的禾谷镰刀菌,我们发现,当真菌在28℃以上生长时,葡萄糖神经酰胺(GlcCer)的Δ3-不饱和度水平在低温时最高,且会降低。通过生物信息学方法,我们鉴定出了一个携带膜结合去饱和酶特征性组氨酸盒基序的新多肽家族。其中一个相应基因在功能上被鉴定为鞘脂-Δ3(E)-去饱和酶。在禾谷镰刀菌中缺失该候选基因会导致GlcCer脂肪酰部分中Δ3(E)-双键的丧失。禾谷镰刀菌相应cDNA在酵母毕赤酵母中的异源表达导致了Δ3(E)-不饱和GlcCer的形成。

相似文献

1
Identification and functional characterization of the 2-hydroxy fatty N-acyl-Delta3(E)-desaturase from Fusarium graminearum.
J Biol Chem. 2008 Dec 26;283(52):36734-42. doi: 10.1074/jbc.M807264200. Epub 2008 Nov 3.

引用本文的文献

2
Glycosphingolipids in Filamentous Fungi: Biological Roles and Potential Applications in Cosmetics and Health Foods.
Front Microbiol. 2021 Jul 22;12:690211. doi: 10.3389/fmicb.2021.690211. eCollection 2021.
3
Cerebrosides and Steroids from the Edible Mushroom with Antioxidant Potential.
Molecules. 2020 Mar 19;25(6):1395. doi: 10.3390/molecules25061395.
5
Engineered Pichia pastoris production of fusaruside, a selective immunomodulator.
BMC Biotechnol. 2019 Jun 17;19(1):37. doi: 10.1186/s12896-019-0532-8.
7
Structural analysis of fungal cerebrosides.
Front Microbiol. 2011 Dec 5;2:239. doi: 10.3389/fmicb.2011.00239. eCollection 2011.
8
Fungal glucosylceramides: from structural components to biologically active targets of new antimicrobials.
Front Microbiol. 2011 Oct 20;2:212. doi: 10.3389/fmicb.2011.00212. eCollection 2011.

本文引用的文献

1
OxygenatedTrans-3-olefinic acids in aStenachaenium seed oil.
Lipids. 1971 Aug;6(8):617-22. doi: 10.1007/BF02531145.
2
Glucosylceramide synthase is essential for alfalfa defensin-mediated growth inhibition but not for pathogenicity of Fusarium graminearum.
Mol Microbiol. 2007 Nov;66(3):771-86. doi: 10.1111/j.1365-2958.2007.05955.x. Epub 2007 Oct 1.
3
Thetrans-3-enoic acids ofGrindelia oxylepis seed oil.
Lipids. 1966 Sep;1(5):301-4. doi: 10.1007/BF02532670.
4
A mutant of Arabidopsis lacking a chloroplast-specific lipid.
Science. 1985 Feb 15;227(4688):763-5. doi: 10.1126/science.227.4688.763.
5
The essential role of phosphatidylglycerol in photosynthesis.
Photosynth Res. 2007 May;92(2):205-15. doi: 10.1007/s11120-007-9203-z. Epub 2007 Jul 17.
8
Are glucocerebrosides the predominant sphingolipids in plant plasma membranes?
Plant Physiol Biochem. 2005 Dec;43(12):1031-8. doi: 10.1016/j.plaphy.2005.10.004. Epub 2005 Dec 13.
9
Identification of fungal sphingolipid C9-methyltransferases by phylogenetic profiling.
J Biol Chem. 2006 Mar 3;281(9):5582-92. doi: 10.1074/jbc.M512864200. Epub 2005 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验