Suppr超能文献

一种通过实验数据约束基于电导的神经元模型的新型多目标优化框架。

A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data.

作者信息

Druckmann Shaul, Banitt Yoav, Gidon Albert, Schürmann Felix, Markram Henry, Segev Idan

机构信息

Interdisciplinary Center for Neural Computation and Institute of Life Sciences, Hebrew University of Jerusalem Israel.

出版信息

Front Neurosci. 2007 Oct 15;1(1):7-18. doi: 10.3389/neuro.01.1.1.001.2007. eCollection 2007 Nov.

Abstract

We present a novel framework for automatically constraining parameters of compartmental models of neurons, given a large set of experimentally measured responses of these neurons. In experiments, intrinsic noise gives rise to a large variability (e.g., in firing pattern) in the voltage responses to repetitions of the exact same input. Thus, the common approach of fitting models by attempting to perfectly replicate, point by point, a single chosen trace out of the spectrum of variable responses does not seem to do justice to the data. In addition, finding a single error function that faithfully characterizes the distance between two spiking traces is not a trivial pursuit. To address these issues, one can adopt a multiple objective optimization approach that allows the use of several error functions jointly. When more than one error function is available, the comparison between experimental voltage traces and model response can be performed on the basis of individual features of interest (e.g., spike rate, spike width). Each feature can be compared between model and experimental mean, in units of its experimental variability, thereby incorporating into the fitting this variability. We demonstrate the success of this approach, when used in conjunction with genetic algorithm optimization, in generating an excellent fit between model behavior and the firing pattern of two distinct electrical classes of cortical interneurons, accommodating and fast-spiking. We argue that the multiple, diverse models generated by this method could serve as the building blocks for the realistic simulation of large neuronal networks.

摘要

我们提出了一种新颖的框架,用于在给定大量神经元实验测量响应的情况下,自动约束神经元房室模型的参数。在实验中,内在噪声会导致对完全相同输入的重复刺激产生的电压响应出现很大的变异性(例如,放电模式)。因此,通过试图逐点完美复制可变响应谱中的单个选定轨迹来拟合模型的常见方法似乎无法公正地处理数据。此外,找到一个能如实表征两个尖峰轨迹之间距离的单一误差函数并非易事。为了解决这些问题,可以采用多目标优化方法,允许联合使用多个误差函数。当有多个误差函数可用时,可以基于感兴趣的各个特征(例如,放电率、脉冲宽度)对实验电压轨迹和模型响应进行比较。可以在模型和实验平均值之间以实验变异性为单位比较每个特征,从而将这种变异性纳入拟合过程。我们证明,当与遗传算法优化结合使用时,这种方法在生成模型行为与两类不同电特性的皮层中间神经元(适应性和快速放电型)的放电模式之间的良好拟合方面取得了成功。我们认为,通过这种方法生成的多个不同模型可以作为大型神经元网络逼真模拟的基石。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d59d/2570085/c2f7a1947ac0/fnins-01-007-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验