Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269.
Department of Neurology, Baylor College of Medicine, Houston, Texas 77030.
J Neurosci. 2023 Sep 20;43(38):6479-6494. doi: 10.1523/JNEUROSCI.0980-23.2023. Epub 2023 Aug 22.
Gain-of-function (GOF) pathogenic variants in the potassium channels KCNQ2 and KCNQ3 lead to hyperexcitability disorders such as epilepsy and autism spectrum disorders. However, the underlying cellular mechanisms of how these variants impair forebrain function are unclear. Here, we show that the R201C variant in KCNQ2 has opposite effects on the excitability of two types of mouse pyramidal neurons of either sex, causing hyperexcitability in layer 2/3 (L2/3) pyramidal neurons and hypoexcitability in CA1 pyramidal neurons. Similarly, the homologous R231C variant in KCNQ3 leads to hyperexcitability in L2/3 pyramidal neurons and hypoexcitability in CA1 pyramidal neurons. However, the effects of KCNQ3 gain-of-function on excitability are specific to superficial CA1 pyramidal neurons. These findings reveal a new level of complexity in the function of KCNQ2 and KCNQ3 channels in the forebrain and provide a framework for understanding the effects of gain-of-function variants and potassium channels in the brain. KCNQ2/3 gain-of-function (GOF) variants lead to severe forms of neurodevelopmental disorders, but the mechanisms by which these channels affect neuronal activity are poorly understood. In this study, using a series of transgenic mice we demonstrate that the same KCNQ2/3 GOF variants can lead to either hyperexcitability or hypoexcitability in different types of pyramidal neurons [CA1 vs layer (L)2/3]. Additionally, we show that expression of the recurrent KCNQ2 GOF variant R201C in forebrain pyramidal neurons could lead to seizures and SUDEP. Our data suggest that the effects of KCNQ2/3 GOF variants depend on specific cell types and brain regions, possibly accounting for the diverse range of phenotypes observed in individuals with KCNQ2/3 GOF variants.
钾通道 KCNQ2 和 KCNQ3 的功能获得性(GOF)致病性变异可导致兴奋性障碍,如癫痫和自闭症谱系障碍。然而,这些变异如何损害大脑前皮质功能的潜在细胞机制尚不清楚。在这里,我们表明 KCNQ2 的 R201C 变异对两种性别的小鼠锥体神经元的兴奋性有相反的影响,导致 2/3 层(L2/3)锥体神经元的过度兴奋和 CA1 锥体神经元的兴奋性降低。同样,KCNQ3 中的同源 R231C 变异导致 L2/3 锥体神经元的过度兴奋和 CA1 锥体神经元的兴奋性降低。然而,KCNQ3 功能获得对兴奋性的影响仅限于浅层 CA1 锥体神经元。这些发现揭示了 KCNQ2 和 KCNQ3 通道在前脑皮质中的功能的新的复杂性,并为理解功能获得性变异和大脑中的钾通道的影响提供了框架。KCNQ2/3 功能获得(GOF)变异可导致严重的神经发育障碍,但这些通道如何影响神经元活动的机制仍不清楚。在这项研究中,我们使用一系列转基因小鼠证明,相同的 KCNQ2/3 GOF 变异可导致不同类型的锥体神经元(CA1 与 L2/3)的过度兴奋或兴奋性降低。此外,我们还表明,大脑前皮质锥体神经元中反复出现的 KCNQ2 GOF 变异 R201C 的表达可导致癫痫发作和 SUDEP。我们的数据表明,KCNQ2/3 GOF 变异的影响取决于特定的细胞类型和脑区,这可能解释了 KCNQ2/3 GOF 变异个体中观察到的不同表型的原因。