Suppr超能文献

KCNQ2/3 功能获得性变异与细胞兴奋性:CA1 区与 L2/3 锥体神经元的差异效应。

KCNQ2/3 Gain-of-Function Variants and Cell Excitability: Differential Effects in CA1 versus L2/3 Pyramidal Neurons.

机构信息

Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269.

Department of Neurology, Baylor College of Medicine, Houston, Texas 77030.

出版信息

J Neurosci. 2023 Sep 20;43(38):6479-6494. doi: 10.1523/JNEUROSCI.0980-23.2023. Epub 2023 Aug 22.

Abstract

Gain-of-function (GOF) pathogenic variants in the potassium channels KCNQ2 and KCNQ3 lead to hyperexcitability disorders such as epilepsy and autism spectrum disorders. However, the underlying cellular mechanisms of how these variants impair forebrain function are unclear. Here, we show that the R201C variant in KCNQ2 has opposite effects on the excitability of two types of mouse pyramidal neurons of either sex, causing hyperexcitability in layer 2/3 (L2/3) pyramidal neurons and hypoexcitability in CA1 pyramidal neurons. Similarly, the homologous R231C variant in KCNQ3 leads to hyperexcitability in L2/3 pyramidal neurons and hypoexcitability in CA1 pyramidal neurons. However, the effects of KCNQ3 gain-of-function on excitability are specific to superficial CA1 pyramidal neurons. These findings reveal a new level of complexity in the function of KCNQ2 and KCNQ3 channels in the forebrain and provide a framework for understanding the effects of gain-of-function variants and potassium channels in the brain. KCNQ2/3 gain-of-function (GOF) variants lead to severe forms of neurodevelopmental disorders, but the mechanisms by which these channels affect neuronal activity are poorly understood. In this study, using a series of transgenic mice we demonstrate that the same KCNQ2/3 GOF variants can lead to either hyperexcitability or hypoexcitability in different types of pyramidal neurons [CA1 vs layer (L)2/3]. Additionally, we show that expression of the recurrent KCNQ2 GOF variant R201C in forebrain pyramidal neurons could lead to seizures and SUDEP. Our data suggest that the effects of KCNQ2/3 GOF variants depend on specific cell types and brain regions, possibly accounting for the diverse range of phenotypes observed in individuals with KCNQ2/3 GOF variants.

摘要

钾通道 KCNQ2 和 KCNQ3 的功能获得性(GOF)致病性变异可导致兴奋性障碍,如癫痫和自闭症谱系障碍。然而,这些变异如何损害大脑前皮质功能的潜在细胞机制尚不清楚。在这里,我们表明 KCNQ2 的 R201C 变异对两种性别的小鼠锥体神经元的兴奋性有相反的影响,导致 2/3 层(L2/3)锥体神经元的过度兴奋和 CA1 锥体神经元的兴奋性降低。同样,KCNQ3 中的同源 R231C 变异导致 L2/3 锥体神经元的过度兴奋和 CA1 锥体神经元的兴奋性降低。然而,KCNQ3 功能获得对兴奋性的影响仅限于浅层 CA1 锥体神经元。这些发现揭示了 KCNQ2 和 KCNQ3 通道在前脑皮质中的功能的新的复杂性,并为理解功能获得性变异和大脑中的钾通道的影响提供了框架。KCNQ2/3 功能获得(GOF)变异可导致严重的神经发育障碍,但这些通道如何影响神经元活动的机制仍不清楚。在这项研究中,我们使用一系列转基因小鼠证明,相同的 KCNQ2/3 GOF 变异可导致不同类型的锥体神经元(CA1 与 L2/3)的过度兴奋或兴奋性降低。此外,我们还表明,大脑前皮质锥体神经元中反复出现的 KCNQ2 GOF 变异 R201C 的表达可导致癫痫发作和 SUDEP。我们的数据表明,KCNQ2/3 GOF 变异的影响取决于特定的细胞类型和脑区,这可能解释了 KCNQ2/3 GOF 变异个体中观察到的不同表型的原因。

相似文献

1
KCNQ2/3 Gain-of-Function Variants and Cell Excitability: Differential Effects in CA1 versus L2/3 Pyramidal Neurons.
J Neurosci. 2023 Sep 20;43(38):6479-6494. doi: 10.1523/JNEUROSCI.0980-23.2023. Epub 2023 Aug 22.
2
Epilepsy-Associated KCNQ2 Channels Regulate Multiple Intrinsic Properties of Layer 2/3 Pyramidal Neurons.
J Neurosci. 2017 Jan 18;37(3):576-586. doi: 10.1523/JNEUROSCI.1425-16.2016.
5
Flexible Stoichiometry: Implications for KCNQ2- and KCNQ3-Associated Neurodevelopmental Disorders.
Dev Neurosci. 2021;43(3-4):191-200. doi: 10.1159/000515495. Epub 2021 Apr 1.
6
KCNQ2 and KCNQ5 form heteromeric channels independent of KCNQ3.
Proc Natl Acad Sci U S A. 2022 Mar 29;119(13):e2117640119. doi: 10.1073/pnas.2117640119. Epub 2022 Mar 23.
8
Loss of KCNQ2 or KCNQ3 Leads to Multifocal Time-Varying Activity in the Neonatal Forebrain .
eNeuro. 2021 May 19;8(3). doi: 10.1523/ENEURO.0024-21.2021. Print 2021 May-Jun.
9
KCNQ3 is the principal target of retigabine in CA1 and subicular excitatory neurons.
J Neurophysiol. 2021 Apr 1;125(4):1440-1449. doi: 10.1152/jn.00564.2020. Epub 2021 Mar 17.
10
Heteromeric Assembly of Truncated Neuronal Kv7 Channels: Implications for Neurologic Disease and Pharmacotherapy.
Mol Pharmacol. 2020 Sep;98(3):192-202. doi: 10.1124/mol.120.119644. Epub 2020 Jun 24.

引用本文的文献

1
Sudden Unexpected Death in Epilepsy: Central Respiratory Chemoreception.
Int J Mol Sci. 2025 Feb 13;26(4):1598. doi: 10.3390/ijms26041598.
2
Plural molecular and cellular mechanisms of pore domain encephalopathy.
Elife. 2025 Jan 6;13:RP91204. doi: 10.7554/eLife.91204.
3
Constitutive opening of the Kv7.2 pore activation gate causes -developmental encephalopathy.
Proc Natl Acad Sci U S A. 2024 Dec 3;121(49):e2412388121. doi: 10.1073/pnas.2412388121. Epub 2024 Nov 27.
4
KCN Channels "Cue" Up GABA Release from Astrocytes.
Epilepsy Curr. 2024 Oct 16;24(6):429-430. doi: 10.1177/15357597241280504. eCollection 2024 Nov-Dec.
5
Persistent Na current couples spreading depolarization to seizures in gain of function mice.
bioRxiv. 2024 Dec 23:2024.10.11.617888. doi: 10.1101/2024.10.11.617888.
7
Linking Respiratory Challenges in KCNQ2 Encephalopathy to "Phox2b" Neurons in the Retrotrapezoid Nucleus.
Epilepsy Curr. 2024 May 16;24(4):289-291. doi: 10.1177/15357597241253680. eCollection 2024 Jul-Aug.
8
Neurocardiac pathologies associated with potassium channelopathies.
Epilepsia. 2024 Sep;65(9):2537-2552. doi: 10.1111/epi.18066. Epub 2024 Aug 1.
9
Novel KCNQ2 missense variant expands the genotype spectrum of DEE7.
Neurol Sci. 2024 Nov;45(11):5481-5488. doi: 10.1007/s10072-024-07655-w. Epub 2024 Jun 17.
10
Glial KCNQ K channels control neuronal output by regulating GABA release from glia in C. elegans.
Neuron. 2024 Jun 5;112(11):1832-1847.e7. doi: 10.1016/j.neuron.2024.02.013. Epub 2024 Mar 8.

本文引用的文献

2
Removal of KCNQ2 from parvalbumin-expressing interneurons improves anti-seizure efficacy of retigabine.
Exp Neurol. 2022 Sep;355:114141. doi: 10.1016/j.expneurol.2022.114141. Epub 2022 Jun 9.
4
Autism-associated mutations in K7 channels induce gating pore current.
Proc Natl Acad Sci U S A. 2021 Nov 9;118(45). doi: 10.1073/pnas.2112666118.
6
Sublayer- and cell-type-specific neurodegenerative transcriptional trajectories in hippocampal sclerosis.
Cell Rep. 2021 Jun 8;35(10):109229. doi: 10.1016/j.celrep.2021.109229.
7
Adult phenotype of encephalopathy.
J Med Genet. 2022 Jun;59(6):528-535. doi: 10.1136/jmedgenet-2020-107449. Epub 2021 Apr 2.
8
Genotype-phenotype correlations in patients with de novo pathogenic variants.
Neurol Genet. 2020 Nov 30;6(6):e528. doi: 10.1212/NXG.0000000000000528. eCollection 2020 Dec.
9
The Role of Kv7.2 in Neurodevelopment: Insights and Gaps in Our Understanding.
Front Physiol. 2020 Oct 28;11:570588. doi: 10.3389/fphys.2020.570588. eCollection 2020.
10
Large-scale targeted sequencing identifies risk genes for neurodevelopmental disorders.
Nat Commun. 2020 Oct 1;11(1):4932. doi: 10.1038/s41467-020-18723-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验