Bashar M K, Mori K, Suenaga Y, Kitasaka T, Mekada Y
Graduate School of Engineering, Nagoya University, Japan.
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):603-10. doi: 10.1007/978-3-540-85990-1_72.
Despite emerging technology, wireless capsule endoscopy needs high amount of diagnosis-time due to the presence of many useless frames, created by turbid fluids, foods, and faecal materials. These materials and fluids present a wide range of colors and/or bubble-like texture patterns. We, therefore, propose a cascade method for informative frame detection, which uses local color histogram to isolate highly contaminated non-bubbled (HCN) frames, and Gauss Laguerre Transform (GLT) based multiresolution norm-1 energy feature to isolate significantly bubbled (SB) frames. Supervised support vector machine is used to classify HCN frames (Stage-1), while automatic bubble segmentation followed by threshold operation (Stage-2) is adopted to detect informative frames by isolating SB frames. An experiment with 20,558 frames from the three videos shows 97.48% average detection accuracy by the proposed method, when compared with methods adopting Gabor based-(75.52%) and discrete wavelet based features (63.15%) with the same color feature.
尽管有新兴技术,但由于存在由浑浊液体、食物和粪便物质产生的许多无用帧,无线胶囊内窥镜检查仍需要大量诊断时间。这些物质和液体呈现出广泛的颜色和/或气泡状纹理图案。因此,我们提出了一种用于信息帧检测的级联方法,该方法使用局部颜色直方图来分离高度污染的无气泡(HCN)帧,并使用基于高斯拉盖尔变换(GLT)的多分辨率范数-1能量特征来分离明显有气泡(SB)的帧。使用监督支持向量机对HCN帧进行分类(第一阶段),而采用自动气泡分割并随后进行阈值操作(第二阶段),通过分离SB帧来检测信息帧。与采用相同颜色特征的基于伽柏(75.52%)和离散小波特征(63.15%)的方法相比,对来自三个视频的20558帧进行的实验表明,所提出的方法平均检测准确率为97.48%。