Suppr超能文献

基于RGB颜色空间中的非线性分析的无线胶囊内窥镜图像异常模式检测

Abnormal pattern detection in Wireless Capsule Endoscopy images using nonlinear analysis in RGB color space.

作者信息

Charisis Vasileios, Hadjileontiadis Leontios J, Liatsos Christos N, Mavrogiannis Christos C, Sergiadis George D

机构信息

Electrical and Computer Engineering Department, Aristotle University of Thessaloniki, Greece.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:3674-7. doi: 10.1109/IEMBS.2010.5627648.

Abstract

In recent years, an innovative method has been developed for the non-invasive observation of the gastrointestinal tract (GT), namely Wireless Capsule Endoscopy (WCE). WCE especially enables a detailed inspection of the entire small bowel and identification of its clinical lesions. However, the foremost disadvantage of this technological breakthrough is the time consuming task of reviewing the vast amount of images produced. To address this, a novel technique for distinguishing pathogenic endoscopic images related to ulcer, the most common disease of GT, is presented here. Towards this direction, the Bidimensional Ensemble Empirical Mode Decomposition was applied to RGB color images of the small bowel acquired by a WCE system in order to extract their Intrinsic Mode Functions (IMFs). The IMFs reveal differences in structure from their finest to their coarsest scale, providing a new analysis domain. Additionally, lacunarity analysis was employed as a method to quantify and extract the texture patterns of the ulcer regions and the normal mucosa, respectively, in order to discriminate the abnormal from the normal images. Experimental results demonstrated promising classification accuracy (>95%), exhibiting a high potential towards WCE-based analysis.

摘要

近年来,一种用于胃肠道(GT)非侵入性观察的创新方法被开发出来,即无线胶囊内镜(WCE)。WCE尤其能够对整个小肠进行详细检查并识别其临床病变。然而,这一技术突破的首要缺点是查看所产生的大量图像这项耗时的任务。为了解决这个问题,本文提出了一种用于区分与GT最常见疾病溃疡相关的致病性内镜图像的新技术。朝着这个方向,将二维总体经验模态分解应用于由WCE系统获取的小肠RGB彩色图像,以提取其本征模态函数(IMF)。IMF揭示了从最精细到最粗糙尺度的结构差异,提供了一个新的分析领域。此外,采用空隙率分析分别量化和提取溃疡区域和正常黏膜的纹理模式,以区分异常图像和正常图像。实验结果显示出有前景的分类准确率(>95%),在基于WCE的分析方面具有很高的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验