Grzymski Joseph J, Murray Alison E, Campbell Barbara J, Kaplarevic Mihailo, Gao Guang R, Lee Charles, Daniel Roy, Ghadiri Amir, Feldman Robert A, Cary Stephen C
Division of Earth and Ecosystem Sciences, Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA.
Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17516-21. doi: 10.1073/pnas.0802782105. Epub 2008 Nov 5.
Hydrothermal vent ecosystems support diverse life forms, many of which rely on symbiotic associations to perform functions integral to survival in these extreme physicochemical environments. Epsilonproteobacteria, found free-living and in intimate associations with vent invertebrates, are the predominant vent-associated microorganisms. The vent-associated polychaete worm, Alvinella pompejana, is host to a visibly dense fleece of episymbionts on its dorsal surface. The episymbionts are a multispecies consortium of Epsilonproteobacteria present as a biofilm. We unraveled details of these enigmatic, uncultivated episymbionts using environmental genome sequencing. They harbor wide-ranging adaptive traits that include high levels of strain variability analogous to Epsilonproteobacteria pathogens such as Helicobacter pylori, metabolic diversity of free-living bacteria, and numerous orthologs of proteins that we hypothesize are each optimally adapted to specific temperature ranges within the 10-65 degrees C fluctuations characteristic of the A. pompejana habitat. This strategic combination enables the consortium to thrive under diverse thermal and chemical regimes. The episymbionts are metabolically tuned for growth in hydrothermal vent ecosystems with genes encoding the complete rTCA cycle, sulfur oxidation, and denitrification; in addition, the episymbiont metagenome also encodes capacity for heterotrophic and aerobic metabolisms. Analysis of the environmental genome suggests that A. pompejana may benefit from the episymbionts serving as a stable source of food and vitamins. The success of Epsilonproteobacteria as episymbionts in hydrothermal vent ecosystems is a product of adaptive capabilities, broad metabolic capacity, strain variance, and virulent traits in common with pathogens.
热液喷口生态系统支持着多样的生命形式,其中许多生命形式依靠共生关系来执行在这些极端物理化学环境中生存所必需的功能。ε-变形菌门细菌既可以自由生活,也可以与喷口无脊椎动物形成紧密联系,是与喷口相关的主要微生物。与喷口相关的多毛纲蠕虫——庞贝蠕虫,其背表面寄生着一层肉眼可见的密集共生菌。这些共生菌是由ε-变形菌门细菌组成的多物种聚生体,以生物膜的形式存在。我们利用环境基因组测序揭示了这些神秘的、未培养的共生菌的细节。它们具有广泛的适应性特征,包括与幽门螺杆菌等ε-变形菌门病原体类似的高度菌株变异性、自由生活细菌的代谢多样性,以及众多直系同源蛋白,我们推测这些蛋白各自最适合庞贝蠕虫栖息地10至65摄氏度波动范围内的特定温度范围。这种策略性组合使聚生体能够在不同的热和化学条件下茁壮成长。这些共生菌在代谢方面经过调整,以适应热液喷口生态系统中的生长,其基因编码完整的还原性三羧酸循环、硫氧化和反硝化作用;此外,共生菌宏基因组还编码异养和好氧代谢能力。对环境基因组的分析表明,庞贝蠕虫可能受益于共生菌作为稳定的食物和维生素来源。ε-变形菌门细菌在热液喷口生态系统中作为共生菌取得成功,是其适应能力、广泛代谢能力、菌株差异以及与病原体共有的毒性特征共同作用的结果。