García-Gómez Juan M, Luts Jan, Julià-Sapé Margarida, Krooshof Patrick, Tortajada Salvador, Robledo Javier Vicente, Melssen Willem, Fuster-García Elies, Olier Iván, Postma Geert, Monleón Daniel, Moreno-Torres Angel, Pujol Jesús, Candiota Ana-Paula, Martínez-Bisbal M Carmen, Suykens Johan, Buydens Lutgarde, Celda Bernardo, Van Huffel Sabine, Arús Carles, Robles Montserrat
IBIME-Itaca, Universidad Politécnica de Valencia, Camino de Vera, Valencia, Spain.
MAGMA. 2009 Feb;22(1):5-18. doi: 10.1007/s10334-008-0146-y. Epub 2008 Nov 7.
Automatic brain tumor classification by MRS has been under development for more than a decade. Nonetheless, to our knowledge, there are no published evaluations of predictive models with unseen cases that are subsequently acquired in different centers. The multicenter eTUMOUR project (2004-2009), which builds upon previous expertise from the INTERPRET project (2000-2002) has allowed such an evaluation to take place.
A total of 253 pairwise classifiers for glioblastoma, meningioma, metastasis, and low-grade glial diagnosis were inferred based on 211 SV short TE INTERPRET MR spectra obtained at 1.5 T (PRESS or STEAM, 20-32 ms) and automatically pre-processed. Afterwards, the classifiers were tested with 97 spectra, which were subsequently compiled during eTUMOUR.
In our results based on subsequently acquired spectra, accuracies of around 90% were achieved for most of the pairwise discrimination problems. The exception was for the glioblastoma versus metastasis discrimination, which was below 78%. A more clear definition of metastases may be obtained by other approaches, such as MRSI + MRI.
The prediction of the tumor type of in-vivo MRS is possible using classifiers developed from previously acquired data, in different hospitals with different instrumentation under the same acquisition protocols. This methodology may find application for assisting in the diagnosis of new brain tumor cases and for the quality control of multicenter MRS databases.
基于磁共振波谱(MRS)的脑肿瘤自动分类技术已开发了十多年。然而,据我们所知,尚未有已发表的关于预测模型在不同中心随后获取的未见过病例上的评估。多中心eTUMOUR项目(2004 - 2009年)基于INTERPRET项目(2000 - 2002年)的先前专业知识,使得这样的评估得以进行。
基于在1.5T获取的211个单变量短回波时间(SV short TE)INTERPRET磁共振波谱(采用PRESS或STEAM序列,20 - 32毫秒)并经过自动预处理,推断出总共253个用于胶质母细胞瘤、脑膜瘤、转移瘤和低级别胶质瘤诊断的成对分类器。之后,用97个波谱对这些分类器进行测试,这些波谱是在eTUMOUR期间随后收集的。
在我们基于随后获取的波谱的结果中,大多数成对判别问题的准确率达到了约90%。胶质母细胞瘤与转移瘤的判别是个例外,其准确率低于78%。通过其他方法,如磁共振波谱成像(MRSI) + 磁共振成像(MRI),可能会得到转移瘤更清晰的定义。
使用从先前获取的数据开发的分类器,在不同医院、不同仪器设备且遵循相同采集协议的情况下,对体内MRS的肿瘤类型进行预测是可行的。这种方法可能会在协助诊断新的脑肿瘤病例以及多中心MRS数据库的质量控制方面找到应用。