Suppr超能文献

基于单体磁共振波谱的稳健条件独立性映射以阐明脑肿瘤与代谢物之间的关联。

Robust Conditional Independence maps of single-voxel Magnetic Resonance Spectra to elucidate associations between brain tumours and metabolites.

机构信息

Department of Applied Mathematics, Liverpool John Moores University (LJMU), Liverpool, United Kingdom.

Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain.

出版信息

PLoS One. 2020 Jul 1;15(7):e0235057. doi: 10.1371/journal.pone.0235057. eCollection 2020.

Abstract

The aim of the paper is two-fold. First, we show that structure finding with the PC algorithm can be inherently unstable and requires further operational constraints in order to consistently obtain models that are faithful to the data. We propose a methodology to stabilise the structure finding process, minimising both false positive and false negative error rates. This is demonstrated with synthetic data. Second, to apply the proposed structure finding methodology to a data set comprising single-voxel Magnetic Resonance Spectra of normal brain and three classes of brain tumours, to elucidate the associations between brain tumour types and a range of observed metabolites that are known to be relevant for their characterisation. The data set is bootstrapped in order to maximise the robustness of feature selection for nominated target variables. Specifically, Conditional Independence maps (CI-maps) built from the data and their derived Bayesian networks have been used. A Directed Acyclic Graph (DAG) is built from CI-maps, being a major challenge the minimization of errors in the graph structure. This work presents empirical evidence on how to reduce false positive errors via the False Discovery Rate, and how to identify appropriate parameter settings to improve the False Negative Reduction. In addition, several node ordering policies are investigated that transform the graph into a DAG. The obtained results show that ordering nodes by strength of mutual information can recover a representative DAG in a reasonable time, although a more accurate graph can be recovered using a random order of samples at the expense of increasing the computation time.

摘要

本文的目的有二。首先,我们表明,使用 PC 算法进行结构发现可能存在固有不稳定性,需要进一步的操作约束,以始终如一地获得忠实于数据的模型。我们提出了一种稳定结构发现过程的方法,最大限度地降低假阳性和假阴性错误率。这在合成数据中得到了证明。其次,将所提出的结构发现方法应用于一组正常脑和三种脑肿瘤的单体磁共振波谱数据集,以阐明脑肿瘤类型与一系列已知与肿瘤特征相关的观察代谢物之间的关联。该数据集采用了自举法,以最大程度地提高指定目标变量的特征选择稳健性。具体来说,从数据及其衍生的贝叶斯网络中构建了条件独立性图 (CI 图)。从 CI 图构建有向无环图 (DAG),主要挑战是最小化图结构中的错误。这项工作提供了实证证据,证明如何通过错误发现率降低假阳性错误,以及如何确定适当的参数设置来提高假阴性减少率。此外,还研究了几种节点排序策略,这些策略将图转换为 DAG。得到的结果表明,通过互信息强度对节点进行排序可以在合理的时间内恢复有代表性的 DAG,尽管使用样本的随机顺序可以恢复更准确的图,但会增加计算时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7615/7329095/2f2c11dc2a47/pone.0235057.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验