Avants Brian, Duda Jeffrey T, Kim Junghoon, Zhang Hui, Pluta John, Gee James C, Whyte John
Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
Acad Radiol. 2008 Nov;15(11):1360-75. doi: 10.1016/j.acra.2008.07.007.
Diffusion tensor (DT) and T1 structural magnetic resonance images provide unique and complementary tools for quantifying the living brain. We leverage both modalities in a diffeomorphic normalization method that unifies analysis of clinical datasets in a consistent and inherently multivariate (MV) statistical framework. We use this technique to study MV effects of traumatic brain injury (TBI).
We contrast T1 and DT image-based measurements in the thalamus and hippocampus of 12 TBI survivors and nine matched controls normalized to a combined DT and T1 template space. The normalization method uses maps that are topology-preserving and unbiased. Normalization is based on the full tensor of information at each voxel and, simultaneously, the similarity between high-resolution features derived from T1 data. The technique is termed symmetric normalization for MV neuroanatomy (SyNMN). Voxel-wise MV statistics on the local volume and mean diffusion are assessed with Hotelling's T(2) test with correction for multiple comparisons.
TBI significantly (false discovery rate P < .05) reduces volume and increases mean diffusion at coincident locations in the mediodorsal thalamus and anterior hippocampus.
SyNMN reveals evidence that TBI compromises the limbic system. This TBI morphometry study and an additional performance evaluation contrasting SyNMN with other methods suggest that the DT component may aid normalization quality.
扩散张量(DT)和T1结构磁共振图像为量化活体大脑提供了独特且互补的工具。我们在一种微分同胚归一化方法中利用这两种模态,该方法在一个一致且内在的多变量(MV)统计框架中统一临床数据集的分析。我们使用这种技术来研究创伤性脑损伤(TBI)的多变量效应。
我们对比了12名TBI幸存者和9名匹配对照者的丘脑和海马体中基于T1和DT图像的测量结果,这些数据已归一化到一个组合的DT和T1模板空间。归一化方法使用的映射是拓扑保持且无偏的。归一化基于每个体素的完整张量信息,同时基于从T1数据导出的高分辨率特征之间的相似性。该技术被称为多变量神经解剖学对称归一化(SyNMN)。使用Hotelling's T(2)检验评估局部体积和平均扩散的体素级多变量统计,并对多重比较进行校正。
TBI显著(错误发现率P <.05)减少了中背侧丘脑和前海马体中重合位置的体积并增加了平均扩散。
SyNMN揭示了TBI损害边缘系统的证据。这项TBI形态测量学研究以及将SyNMN与其他方法进行对比的额外性能评估表明,DT成分可能有助于提高归一化质量。