Suppr超能文献

优化哺乳动物细胞体系生产的重组蛋白的糖基化细胞代谢。

Optimisation of the cellular metabolism of glycosylation for recombinant proteins produced by Mammalian cell systems.

机构信息

Department of Microbiology, University of Manitoba, R3T 2N2, Winnipeg, Manitoba, Canada,

出版信息

Cytotechnology. 2006 Mar;50(1-3):57-76. doi: 10.1007/s10616-005-4537-x. Epub 2006 Jun 9.

Abstract

Many biopharmaceuticals are now produced as secreted glycoproteins from mammalian cell culture. The glycosylation profile of these proteins is essential to ensure structural stability and biological and clinical activity. However, the ability to control the glycosylation is limited by our understanding of the parameters that affect the heterogeneity of added glycan structures. It is clear that the glycosylation process is affected by a number of factors including the 3-dimensional structure of the protein, the enzyme repertoire of the host cell, the transit time in the Golgi and the availability of intracellular sugar-nucleotide donors. From a process development perspective there are many culture parameters that can be controlled to enable a consistent glycosylation profile to emerge from each batch culture. A further, but more difficult goal is to control the culture conditions to enable the enrichment of specific glycoforms identified with desirable biological activities. The purpose of this paper is to discuss the cellular metabolism associated with protein glycosylation and review the attempts to manipulate, control or engineer this metabolism to allow the expression of human glycosylation profiles in producer lines such as genetically engineered Chinese hamster ovary (CHO) cells.

摘要

许多生物制药现在都是从哺乳动物细胞培养中作为分泌型糖蛋白生产的。这些蛋白质的糖基化谱对于确保结构稳定性和生物学及临床活性至关重要。然而,控制糖基化的能力受到我们对影响添加糖链结构异质性的参数的理解的限制。很明显,糖基化过程受到许多因素的影响,包括蛋白质的三维结构、宿主细胞的酶谱、高尔基体中的转运时间以及细胞内糖核苷酸供体的可用性。从工艺开发的角度来看,有许多可以控制的培养参数,可以使每个批次培养都具有一致的糖基化谱。更进一步但更困难的目标是控制培养条件,以使具有所需生物学活性的特定糖型得到富集。本文的目的是讨论与蛋白质糖基化相关的细胞代谢,并综述试图操纵、控制或设计这种代谢以允许在生产者系(如基因工程中国仓鼠卵巢(CHO)细胞)中表达人糖基化谱的尝试。

相似文献

4
Animal Cell Expression Systems.动物细胞表达系统。
Adv Biochem Eng Biotechnol. 2021;175:1-36. doi: 10.1007/10_2017_31.
6
Controllability analysis of protein glycosylation in CHO cells.CHO 细胞中蛋白质糖基化的可控性分析。
PLoS One. 2014 Feb 3;9(2):e87973. doi: 10.1371/journal.pone.0087973. eCollection 2014.

引用本文的文献

3
Cell Free Remodeling of Glycosylation of Antibodies.抗体糖基化的无细胞重塑。
Methods Mol Biol. 2022;2370:117-146. doi: 10.1007/978-1-0716-1685-7_6.
5
Site-Specific Steric Control of SARS-CoV-2 Spike Glycosylation.SARS-CoV-2 刺突糖基化的位点特异性空间位阻控制。
Biochemistry. 2021 Jul 13;60(27):2153-2169. doi: 10.1021/acs.biochem.1c00279. Epub 2021 Jul 2.
10
Comprehensive manipulation of glycosylation profiles across development scales.全面调控发育尺度上的糖基化图谱。
MAbs. 2019 Feb/Mar;11(2):335-349. doi: 10.1080/19420862.2018.1527665. Epub 2018 Oct 22.

本文引用的文献

3
A mathematical model of N-linked glycoform biosynthesis.N-连接糖型生物合成的数学模型。
Biotechnol Bioeng. 1997 Sep 20;55(6):890-908. doi: 10.1002/(SICI)1097-0290(19970920)55:6<890::AID-BIT7>3.0.CO;2-B.
9
Unraveling the mechanism of protein N-glycosylation.解析蛋白质N-糖基化的机制。
J Biol Chem. 2005 Feb 4;280(5):3121-4. doi: 10.1074/jbc.R400036200. Epub 2004 Dec 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验