Suppr超能文献

海马颗粒细胞中来自外侧输入对内嗅皮层内侧输入的时间模式敏感性的修饰。

Modification of temporal pattern sensitivity for inputs from medial entorhinal cortex by lateral inputs in hippocampal granule cells.

作者信息

Nakajima Naoki, Kamijo Tadanobu, Hayakawa Hirofumi, Sugisaki Eriko, Aihara Takeshi

机构信息

Graduated School of Engineering, Tamagawa University, Tokyo, Japan.

Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.

出版信息

Cogn Neurodyn. 2024 Jun;18(3):1047-1059. doi: 10.1007/s11571-023-09964-w. Epub 2023 Apr 13.

Abstract

The medial dendrites (MDs) of granule cells (GCs) receive spatial information through the medial entorhinal cortex (MEC) from the entorhinal cortex in the rat hippocampus while the distal dendrites (DDs) of GCs receive non-spatial information (sensory inputs) through the lateral entorhinal cortex (LEC). However, it is unclear how information processing through the two pathways is managed in GCs. In this study, we investigated associative information processing between two independent inputs to MDs and DDs. First, in physiological experiments, to compare response characteristics between MDs and DDs, electrical stimuli comprising five pulses were applied to the MPP or LPP in rat hippocampal slices. These stimuli transiently decreased the excitatory postsynaptic potentials (EPSPs) of successive input pulses to MDs, whereas EPSPs to DDs showed sustained responses. Next, in computational experiments using a local network model obtained by fitting of the physiological experimental data, we compared associative information processing between DDs and MDs. The results showed that the temporal pattern sensitivity for burst inputs to MDs depended on the frequency of the random pulse inputs applied to DDs. On the other hand, with lateral inhibition to GCs from interneurons, the temporal pattern sensitivity for burst inputs to MDs was enhanced or tuned up according to the frequency of the random pulse inputs to the other cells. Thus, our results suggest that the temporal pattern sensitivity of spatial information depends on the non-spatial inputs to GCs.

摘要

大鼠海马体中颗粒细胞(GCs)的内侧树突(MDs)通过内嗅皮层的内侧内嗅皮层(MEC)接收空间信息,而颗粒细胞的远端树突(DDs)则通过外侧内嗅皮层(LEC)接收非空间信息(感觉输入)。然而,尚不清楚颗粒细胞如何管理通过这两条途径的信息处理。在本研究中,我们研究了向内侧树突和远端树突的两个独立输入之间的关联信息处理。首先,在生理实验中,为了比较内侧树突和远端树突之间的反应特性,将包含五个脉冲的电刺激施加到大鼠海马切片中的内侧穿通通路(MPP)或外侧穿通通路(LPP)。这些刺激短暂降低了向内侧树突的连续输入脉冲的兴奋性突触后电位(EPSPs),而向远端树突的EPSPs则显示出持续反应。接下来,在使用通过拟合生理实验数据获得的局部网络模型的计算实验中,我们比较了远端树突和内侧树突之间的关联信息处理。结果表明,内侧树突对爆发输入的时间模式敏感性取决于施加到远端树突的随机脉冲输入的频率。另一方面,随着中间神经元对颗粒细胞的侧向抑制,内侧树突对爆发输入的时间模式敏感性根据对其他细胞的随机脉冲输入的频率而增强或上调。因此,我们的结果表明,空间信息的时间模式敏感性取决于颗粒细胞的非空间输入。

相似文献

1
Modification of temporal pattern sensitivity for inputs from medial entorhinal cortex by lateral inputs in hippocampal granule cells.
Cogn Neurodyn. 2024 Jun;18(3):1047-1059. doi: 10.1007/s11571-023-09964-w. Epub 2023 Apr 13.
2
Spatial information enhanced by non-spatial information in hippocampal granule cells.
Cogn Neurodyn. 2015 Feb;9(1):1-12. doi: 10.1007/s11571-014-9309-x. Epub 2014 Sep 11.
3
Activation of Granule Cell Interneurons by Two Divergent Local Circuit Pathways in the Rat Olfactory Bulb.
J Neurosci. 2020 Dec 9;40(50):9701-9714. doi: 10.1523/JNEUROSCI.0989-20.2020. Epub 2020 Nov 24.
4
Processing of Hippocampal Network Activity in the Receiver Network of the Medial Entorhinal Cortex Layer V.
J Neurosci. 2020 Oct 28;40(44):8413-8425. doi: 10.1523/JNEUROSCI.0586-20.2020. Epub 2020 Sep 25.
6
Preferential Targeting of Lateral Entorhinal Inputs onto Newly Integrated Granule Cells.
J Neurosci. 2018 Jun 27;38(26):5843-5853. doi: 10.1523/JNEUROSCI.1737-17.2018. Epub 2018 May 23.
9
A million-plus neuron model of the hippocampal dentate gyrus: Dependency of spatio-temporal network dynamics on topography.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:4713-6. doi: 10.1109/EMBC.2015.7319446.
10

引用本文的文献

1
Formation of cognitive maps in large-scale environments by sensorimotor integration.
Cogn Neurodyn. 2025 Dec;19(1):19. doi: 10.1007/s11571-024-10200-2. Epub 2025 Jan 9.

本文引用的文献

1
Parallel processing of sensory cue and spatial information in the dentate gyrus.
Cell Rep. 2022 Jan 18;38(3):110257. doi: 10.1016/j.celrep.2021.110257.
2
3
Functionally Distinct Neuronal Ensembles within the Memory Engram.
Cell. 2020 Apr 16;181(2):410-423.e17. doi: 10.1016/j.cell.2020.02.055. Epub 2020 Mar 17.
5
Morphological diversity and connectivity of hippocampal interneurons.
Cell Tissue Res. 2018 Sep;373(3):619-641. doi: 10.1007/s00441-018-2882-2. Epub 2018 Aug 6.
6
Spatial information enhanced by non-spatial information in hippocampal granule cells.
Cogn Neurodyn. 2015 Feb;9(1):1-12. doi: 10.1007/s11571-014-9309-x. Epub 2014 Sep 11.
7
Coordination of entorhinal-hippocampal ensemble activity during associative learning.
Nature. 2014 Jun 5;510(7503):143-7. doi: 10.1038/nature13162. Epub 2014 Apr 16.
8
Comparison of sleep spindles and theta oscillations in the hippocampus.
J Neurosci. 2014 Jan 8;34(2):662-74. doi: 10.1523/JNEUROSCI.0552-13.2014.
9
Electrophysiological identification of medial and lateral perforant path inputs to the dentate gyrus.
Neuroscience. 2013 Nov 12;252:154-68. doi: 10.1016/j.neuroscience.2013.07.063. Epub 2013 Aug 7.
10
Odor-evoked activity in the mouse lateral entorhinal cortex.
Neuroscience. 2012 Oct 25;223:12-20. doi: 10.1016/j.neuroscience.2012.07.067. Epub 2012 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验