Suppr超能文献

用于混合治愈模型的惩罚似然方法。

A penalized likelihood approach for mixture cure models.

作者信息

Corbière Fabien, Commenges Daniel, Taylor Jeremy M G, Joly Pierre

机构信息

INSERM U897 Biostatistique, Bordeaux F-33076, France.

出版信息

Stat Med. 2009 Feb 1;28(3):510-24. doi: 10.1002/sim.3481.

Abstract

Cure models have been developed to analyze failure time data with a cured fraction. For such data, standard survival models are usually not appropriate because they do not account for the possibility of cure. Mixture cure models assume that the studied population is a mixture of susceptible individuals, who may experience the event of interest, and non-susceptible individuals that will never experience it. Important issues in mixture cure models are estimation of the baseline survival function for susceptibles and estimation of the variance of the regression parameters. The aim of this paper is to propose a penalized likelihood approach, which allows for flexible modeling of the hazard function for susceptible individuals using M-splines. This approach also permits direct computation of the variance of parameters using the inverse of the Hessian matrix. Properties and limitations of the proposed method are discussed and an illustration from a cancer study is presented.

摘要

已开发出治愈模型来分析带有治愈比例的失效时间数据。对于此类数据,标准生存模型通常并不适用,因为它们没有考虑到治愈的可能性。混合治愈模型假定所研究的总体是由可能经历感兴趣事件的易感个体和永远不会经历该事件的非易感个体组成的混合体。混合治愈模型中的重要问题是易感个体的基线生存函数估计以及回归参数方差的估计。本文的目的是提出一种惩罚似然方法,该方法允许使用M样条对易感个体的风险函数进行灵活建模。此方法还允许使用海森矩阵的逆直接计算参数的方差。讨论了所提方法的性质和局限性,并给出了一项癌症研究的示例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验