Suppr超能文献

跨膜氧化还原酶DsbD中周质结构域间硫醇-二硫键交换的调控

Control of periplasmic interdomain thiol:disulfide exchange in the transmembrane oxidoreductase DsbD.

作者信息

Mavridou Despoina A I, Stevens Julie M, Goddard Alan D, Willis Antony C, Ferguson Stuart J, Redfield Christina

机构信息

Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.

Medical Research Council Immunochemistry Unit, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.

出版信息

J Biol Chem. 2009 Jan 30;284(5):3219-3226. doi: 10.1074/jbc.M805963200. Epub 2008 Nov 12.

Abstract

The bacterial protein DsbD transfers reductant from the cytoplasm to the otherwise oxidizing environment of the periplasm. This reducing power is required for several essential pathways, including disulfide bond formation and cytochrome c maturation. DsbD includes a transmembrane domain (tmDsbD) flanked by two globular periplasmic domains (nDsbD/cDsbD); each contains a cysteine pair involved in electron transfer via a disulfide exchange cascade. The final step in the cascade involves reduction of the Cys(103)-Cys(109) disulfide of nDsbD by Cys(461) of cDsbD. Here we show that a complex between the globular periplasmic domains is trapped in vivo only when both are linked by tmDsbD. We have found previously ( Mavridou, D. A., Stevens, J. M., Ferguson, S. J., & Redfield, C. (2007) J. Mol. Biol. 370, 643-658 ) that the attacking cysteine (Cys(461)) in isolated cDsbD has a high pK(a) value (10.5) that makes this thiol relatively unreactive toward the target disulfide in nDsbD. Here we show using NMR that active-site pK(a) values change significantly when cDsbD forms a complex with nDsbD. This modulation of pK(a) values is critical for the specificity and function of cDsbD. Uncomplexed cDsbD is a poor nucleophile, allowing it to avoid nonspecific reoxidation; however, in complex with nDsbD, the nucleophilicity of cDsbD increases permitting reductant transfer. The observation of significant changes in active-site pK(a) values upon complex formation has wider implications for understanding reactivity in thiol:disulfide oxidoreductases.

摘要

细菌蛋白DsbD将还原剂从细胞质转移到周质的氧化环境中。这种还原能力是包括二硫键形成和细胞色素c成熟在内的几种重要途径所必需的。DsbD包括一个跨膜结构域(tmDsbD),两侧是两个球形周质结构域(nDsbD/cDsbD);每个结构域都包含一对半胱氨酸,通过二硫键交换级联参与电子转移。级联反应的最后一步是cDsbD的半胱氨酸(Cys461)还原nDsbD的Cys(103)-Cys(109)二硫键。在这里,我们表明,只有当两个球形周质结构域通过tmDsbD连接时,它们之间的复合物才会在体内被捕获。我们之前发现(Mavridou, D. A., Stevens, J. M., Ferguson, S. J., & Redfield, C. (2007) J. Mol. Biol. 370, 643 - 658),分离的cDsbD中的进攻性半胱氨酸(Cys461)具有较高的pKa值(10.5),这使得该硫醇对nDsbD中的目标二硫键相对不反应。在这里,我们使用核磁共振表明,当cDsbD与nDsbD形成复合物时,活性位点的pKa值会发生显著变化。这种pKa值的调节对于cDsbD的特异性和功能至关重要。未复合的cDsbD是一种较差的亲核试剂,使其能够避免非特异性再氧化;然而,与nDsbD复合时,cDsbD的亲核性增加,从而允许还原剂转移。复合物形成时活性位点pKa值的显著变化这一观察结果对于理解硫醇:二硫键氧化还原酶中的反应性具有更广泛的意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bc5/2631958/cb186d00932d/zbc0060963300001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验