Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
Department of Molecular Biosciences, University of Texas at Austin, Austin, United States.
Elife. 2020 Jun 22;9:e54661. doi: 10.7554/eLife.54661.
Local structural frustration, the existence of mutually exclusive competing interactions, may explain why some proteins are dynamic while others are rigid. Frustration is thought to underpin biomolecular recognition and the flexibility of protein-binding sites. Here, we show how a small chemical modification, the oxidation of two cysteine thiols to a disulfide bond, during the catalytic cycle of the N-terminal domain of the key bacterial oxidoreductase DsbD (nDsbD), introduces frustration ultimately influencing protein function. In oxidized nDsbD, local frustration disrupts the packing of the protective cap-loop region against the active site allowing loop opening. By contrast, in reduced nDsbD the cap loop is rigid, always protecting the active-site thiols from the oxidizing environment of the periplasm. Our results point toward an intricate coupling between the dynamics of the active-site cysteines and of the cap loop which modulates the association reactions of nDsbD with its partners resulting in optimized protein function.
局部结构的受挫,相互排斥的竞争相互作用的存在,可能解释了为什么有些蛋白质是动态的,而有些则是刚性的。人们认为受挫是生物分子识别和蛋白质结合位点灵活性的基础。在这里,我们展示了在关键细菌氧化还原酶 DsbD(nDsbD)的 N 端结构域的催化循环中,一个小的化学修饰(两个半胱氨酸巯基氧化成二硫键)如何引入受挫,最终影响蛋白质功能。在氧化的 nDsbD 中,局部受挫破坏了保护性帽环区域与活性位点的包装,允许环打开。相比之下,在还原的 nDsbD 中,帽环是刚性的,始终保护活性位点的巯基免受周质氧化环境的影响。我们的结果表明,活性位点半胱氨酸和帽环的动力学之间存在着复杂的耦合,这种耦合调节了 nDsbD 与其伴侣的缔合反应,从而优化了蛋白质功能。