Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
J Biol Chem. 2011 Jul 15;286(28):24943-56. doi: 10.1074/jbc.M111.236141. Epub 2011 May 3.
Bacterial growth and pathogenicity depend on the correct formation of disulfide bonds, a process controlled by the Dsb system in the periplasm of Gram-negative bacteria. Proteins with a thioredoxin fold play a central role in this process. A general feature of thiol-disulfide exchange reactions is the need to avoid a long lived product complex between protein partners. We use a multidisciplinary approach, involving NMR, x-ray crystallography, surface plasmon resonance, mutagenesis, and in vivo experiments, to investigate the interaction between the two soluble domains of the transmembrane reductant conductor DsbD. Our results show oxidation state-dependent affinities between these two domains. These observations have implications for the interactions of the ubiquitous thioredoxin-like proteins with their substrates, provide insight into the key role played by a unique redox partner with an immunoglobulin fold, and are of general importance for oxidative protein-folding pathways in all organisms.
细菌的生长和致病性取决于正确形成二硫键,这一过程由革兰氏阴性菌周质中的 Dsb 系统控制。具有硫氧还蛋白折叠结构的蛋白质在这个过程中起着核心作用。巯基-二硫键交换反应的一个普遍特征是需要避免蛋白质伴侣之间形成持久的产物复合物。我们使用了一种多学科的方法,包括 NMR、X 射线晶体学、表面等离子体共振、突变和体内实验,来研究跨膜还原剂导体 DsbD 的两个可溶性结构域之间的相互作用。我们的结果表明,这两个结构域之间存在氧化状态依赖性的亲和力。这些观察结果对普遍存在的硫氧还蛋白样蛋白与其底物的相互作用具有重要意义,深入了解了具有免疫球蛋白折叠结构的独特氧化还原伴侣所起的关键作用,并且对所有生物体中的氧化蛋白折叠途径具有普遍重要性。