Suppr超能文献

视网膜祖细胞中Pax6的双重需求。

Dual requirement for Pax6 in retinal progenitor cells.

作者信息

Oron-Karni Varda, Farhy Chen, Elgart Michael, Marquardt Till, Remizova Lena, Yaron Orly, Xie Qing, Cvekl Ales, Ashery-Padan Ruth

机构信息

Sackler Faculty of Medicine, Human Molecular Genetics and Biochemistry, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel.

European Neuroscience Institute, Developmental Neurobiology Laboratory, University of Göttingen Medical School/Max Planck Society, Grisebachstrasse 5, 37077 Göttingen, Germany.

出版信息

Development. 2008 Dec;135(24):4037-4047. doi: 10.1242/dev.028308. Epub 2008 Nov 12.

Abstract

Throughout the developing central nervous system, pre-patterning of the ventricular zone into discrete neural progenitor domains is one of the predominant strategies used to produce neuronal diversity in a spatially coordinated manner. In the retina, neurogenesis proceeds in an intricate chronological and spatial sequence, yet it remains unclear whether retinal progenitor cells (RPCs) display intrinsic heterogeneity at any given time point. Here, we performed a detailed study of RPC fate upon temporally and spatially confined inactivation of Pax6. Timed genetic removal of Pax6 appeared to unmask a cryptic divergence of RPCs into qualitatively divergent progenitor pools. In the more peripheral RPCs under normal circumstances, Pax6 seemed to prevent premature activation of a photoreceptor-differentiation pathway by suppressing expression of the transcription factor Crx. More centrally, Pax6 contributed to the execution of the comprehensive potential of RPCs: Pax6 ablation resulted in the exclusive generation of amacrine interneurons. Together, these data suggest an intricate dual role for Pax6 in retinal neurogenesis, while pointing to the cryptic divergence of RPCs into distinct progenitor pools.

摘要

在整个发育中的中枢神经系统中,将脑室区预模式化为离散的神经祖细胞区域是用于以空间协调方式产生神经元多样性的主要策略之一。在视网膜中,神经发生以复杂的时间和空间顺序进行,但尚不清楚视网膜祖细胞(RPC)在任何给定时间点是否表现出内在异质性。在这里,我们对Pax6在时间和空间上受限失活后的RPC命运进行了详细研究。Pax6的定时基因去除似乎揭示了RPC向性质不同的祖细胞池的隐秘分化。在正常情况下,在外围较多的RPC中,Pax6似乎通过抑制转录因子Crx的表达来阻止光感受器分化途径的过早激活。在更靠中心的区域,Pax6有助于RPC综合潜能的发挥:Pax6缺失导致仅产生无长突中间神经元。总之,这些数据表明Pax6在视网膜神经发生中具有复杂的双重作用,同时指出RPC向不同祖细胞池的隐秘分化。

相似文献

1
Dual requirement for Pax6 in retinal progenitor cells.
Development. 2008 Dec;135(24):4037-4047. doi: 10.1242/dev.028308. Epub 2008 Nov 12.
2
Pax6 is required for normal cell-cycle exit and the differentiation kinetics of retinal progenitor cells.
PLoS One. 2013 Sep 20;8(9):e76489. doi: 10.1371/journal.pone.0076489. eCollection 2013.
3
Stage-dependent requirement of neuroretinal Pax6 for lens and retina development.
Development. 2014 Mar;141(6):1292-302. doi: 10.1242/dev.098822. Epub 2014 Feb 12.
4
Gene expression is dynamically regulated in retinal progenitor cells prior to and during overt cellular differentiation.
Gene Expr Patterns. 2014 Jan;14(1):42-54. doi: 10.1016/j.gep.2013.10.003. Epub 2013 Oct 19.
5
Mechanisms controlling Pax6 isoform expression in the retina have been conserved between teleosts and mammals.
Dev Biol. 2007 Jul 15;307(2):498-520. doi: 10.1016/j.ydbio.2007.04.015. Epub 2007 Apr 20.
7
Functional dissection of the Pax6 paired domain: Roles in neural tube patterning and peripheral nervous system development.
Dev Biol. 2016 May 1;413(1):86-103. doi: 10.1016/j.ydbio.2015.07.009. Epub 2015 Jul 15.
9
The generation of superficial cortical layers is regulated by levels of the transcription factor Pax6.
Cereb Cortex. 2011 Jan;21(1):81-94. doi: 10.1093/cercor/bhq061. Epub 2010 Apr 22.

引用本文的文献

2
Molecular analysis of RAX2-regulated retinal development using human retinal organoids at a single-cell resolution.
Front Cell Dev Biol. 2025 Jun 5;13:1609826. doi: 10.3389/fcell.2025.1609826. eCollection 2025.
5
Stage-specific dynamic reorganization of genome topology shapes transcriptional neighborhoods in developing human retinal organoids.
Cell Rep. 2023 Dec 26;42(12):113543. doi: 10.1016/j.celrep.2023.113543. Epub 2023 Dec 3.
6
Molecular mechanisms controlling vertebrate retinal patterning, neurogenesis, and cell fate specification.
Trends Genet. 2023 Oct;39(10):736-757. doi: 10.1016/j.tig.2023.06.002. Epub 2023 Jul 8.
7
Rod and Cone Dark Adaptation in Congenital Aniridia and Its Association With Retinal Structure.
Invest Ophthalmol Vis Sci. 2023 Apr 3;64(4):18. doi: 10.1167/iovs.64.4.18.
8
Congenital aniridia beyond black eyes: From phenotype and novel genetic mechanisms to innovative therapeutic approaches.
Prog Retin Eye Res. 2023 Jul;95:101133. doi: 10.1016/j.preteyeres.2022.101133. Epub 2022 Oct 22.
9
Cell fate decisions, transcription factors and signaling during early retinal development.
Prog Retin Eye Res. 2022 Nov;91:101093. doi: 10.1016/j.preteyeres.2022.101093. Epub 2022 Jul 8.

本文引用的文献

2
Role of intermediate progenitor cells in cerebral cortex development.
Dev Neurosci. 2008;30(1-3):24-32. doi: 10.1159/000109848.
3
Regulation of photoreceptor gene expression by Crx-associated transcription factor network.
Brain Res. 2008 Feb 4;1192:114-33. doi: 10.1016/j.brainres.2007.06.036. Epub 2007 Jun 30.
4
Radial glial cell heterogeneity--the source of diverse progeny in the CNS.
Prog Neurobiol. 2007 Sep;83(1):2-23. doi: 10.1016/j.pneurobio.2007.02.010. Epub 2007 Mar 7.
5
Regulation of retinal cell fate specification by multiple transcription factors.
Brain Res. 2008 Feb 4;1192:90-8. doi: 10.1016/j.brainres.2007.04.014. Epub 2007 Apr 11.
6
Iris development in vertebrates; genetic and molecular considerations.
Brain Res. 2008 Feb 4;1192:17-28. doi: 10.1016/j.brainres.2007.03.043. Epub 2007 Mar 20.
8
Molecular mechanisms of optic vesicle development: complexities, ambiguities and controversies.
Dev Biol. 2007 May 1;305(1):1-13. doi: 10.1016/j.ydbio.2007.01.045. Epub 2007 Feb 7.
9
c-kit marks late retinal progenitor cells and regulates their differentiation in developing mouse retina.
Dev Biol. 2007 Jan 1;301(1):141-54. doi: 10.1016/j.ydbio.2006.09.027. Epub 2006 Sep 20.
10
Docosahexaenoic acid promotes photoreceptor differentiation without altering Crx expression.
Invest Ophthalmol Vis Sci. 2006 Jul;47(7):3017-27. doi: 10.1167/iovs.05-1659.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验