Suppr超能文献

抗病毒转录组学的比较分析揭示了流感免疫拮抗的新作用。

Comparative analysis of anti-viral transcriptomics reveals novel effects of influenza immune antagonism.

作者信息

Thakar Juilee, Hartmann Boris M, Marjanovic Nada, Sealfon Stuart C, Kleinstein Steven H

机构信息

Department of Pathology, Yale School of Medicine, New Haven, CT, 06510, USA.

Department of Microbiology and Immunology, University of Rochester, Rochester, NY, 14642, USA.

出版信息

BMC Immunol. 2015 Aug 14;16:46. doi: 10.1186/s12865-015-0107-y.

Abstract

BACKGROUND

Comparative analysis of genome-wide expression profiles are increasingly being used to study virus-specific host interactions. In order to gain mechanistic insights, gene expression profiles can be combined with information on DNA-binding sites of transcription factors to detect transcription factor activity (by analysis of target gene sets) during viral infections. Here, we apply this approach to study mechanisms of immune antagonism elicited by Influenza A virus (New Caledonia/20/1999) by comparing the transcriptional response with the non-pathogenic Newcastle disease virus (NDV), which lacks human immune antagonism.

RESULTS

Existing gene set approaches do not quantify activity in a way that can be statistically compared between responses. We thus developed a new method for Bayesian Estimation of Transcription factor Activity (BETA) that allows for such quantification and comparative analysis across multiple responses. BETA predicted decreased ISGF3 activity during influenza A infection of human dendritic cells (reflected in lower expression of Interferon Stimulated Genes, ISGs). This prediction was confirmed through a combination of mathematical modeling and experiments at different multiplicities of infection to show that ISGs were specifically blocked in infected cells. Suppression of the transcription factor SATB1 was also predicted as a novel effect of influenza-mediated immune antagonism, and validated experimentally.

CONCLUSIONS

Comparative analysis of genome-wide transcriptional profiles can reveal new effects of viral immune antagonism. We have developed a computational framework (BETA) that enables quantitative comparative analysis of transcription factor activities. This method will aid future studies to identify mechanistic differences in the host-pathogen interactions. Application of BETA to genome-wide transcriptional profiling data from human DCs identified SATB1 as a novel effect of influenza antagonism.

摘要

背景

全基因组表达谱的比较分析越来越多地用于研究病毒特异性的宿主相互作用。为了深入了解其机制,基因表达谱可与转录因子DNA结合位点的信息相结合,以检测病毒感染期间的转录因子活性(通过分析靶基因集)。在此,我们应用这种方法,通过将转录反应与缺乏人类免疫拮抗作用的非致病性新城疫病毒(NDV)进行比较,来研究甲型流感病毒(新喀里多尼亚/20/1999)引发的免疫拮抗机制。

结果

现有的基因集方法无法以一种能够在不同反应之间进行统计学比较的方式来量化活性。因此,我们开发了一种用于转录因子活性贝叶斯估计(BETA)的新方法,该方法允许进行这种量化以及跨多个反应的比较分析。BETA预测在人树突状细胞感染甲型流感期间ISGF3活性降低(反映在干扰素刺激基因,即ISG的较低表达中)。通过数学建模和不同感染复数下的实验相结合,证实了这一预测,表明ISG在感染细胞中被特异性阻断。转录因子SATB1的抑制也被预测为流感介导的免疫拮抗的一种新效应,并通过实验得到了验证。

结论

全基因组转录谱的比较分析可以揭示病毒免疫拮抗的新效应。我们开发了一个计算框架(BETA),能够对转录因子活性进行定量比较分析。该方法将有助于未来的研究识别宿主-病原体相互作用中的机制差异。将BETA应用于来自人树突状细胞的全基因组转录谱数据,确定SATB1是流感拮抗的一种新效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2de6/4536893/a1f470138c80/12865_2015_107_Fig2_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验