Kwon Oh-Hoon, Barwick Brett, Park Hyun Soon, Baskin J Spencer, Zewail Ahmed H
Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA.
Nano Lett. 2008 Nov;8(11):3557-62. doi: 10.1021/nl8029866.
With four-dimensional (4D) electron microscopy, we report in situ imaging of the mechanical drumming of a nanoscale material. The single crystal graphite film is found to exhibit global resonance motion that is fully reversible and follows the same evolution after each initiating stress pulse. At early times, the motion appears "chaotic" showing the different mechanical modes present over the micron scale. At longer time, the motion of the thin film collapses into a well-defined fundamental frequency of 1.08 MHz, a behavior reminiscent of mode locking; the mechanical motion damps out after approximately 200 micros and the oscillation has a "cavity" quality factor of 150. The resonance time is determined by the stiffness of the material, and for the 75 nm thick and 40 microm square specimen used here we determined Young's modulus to be 1.0 TPa for the in-plane stress-strain profile. Because of its real-time dimension, this 4D microscopy should have applications in the study of these and other types of materials structures.
通过四维(4D)电子显微镜,我们报告了对纳米级材料机械振动的原位成像。发现单晶石墨膜表现出完全可逆的整体共振运动,并且在每个初始应力脉冲后遵循相同的演化。在早期,运动看起来“混沌”,显示出在微米尺度上存在的不同机械模式。在更长时间,薄膜的运动坍缩为定义明确的1.08 MHz基频,这种行为让人联想到锁模;机械运动在大约200微秒后衰减,并且振荡具有150的“腔”品质因数。共振时间由材料的刚度决定,对于此处使用的75纳米厚、40微米见方的样品,我们确定其平面内应力 - 应变曲线的杨氏模量为1.0太帕。由于其实时维度,这种4D显微镜在研究这些以及其他类型的材料结构方面应该有应用。