Suppr超能文献

透射电子显微镜中时域声子光谱的高分辨率模拟。

High-resolution analogue of time-domain phonon spectroscopy in the transmission electron microscope.

作者信息

VandenBussche Elisah J, Flannigan David J

机构信息

Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2020 Dec 11;378(2186):20190598. doi: 10.1098/rsta.2019.0598. Epub 2020 Oct 26.

Abstract

Femtosecond photoexcitation of semiconducting materials leads to the generation of coherent acoustic phonons (CAPs), the behaviours of which are linked to intrinsic and engineered electronic, optical and structural properties. While often studied with pump-probe spectroscopic techniques, the influence of nanoscale structure and morphology on CAP dynamics can be challenging to resolve with these all-optical methods. Here, we used ultrafast electron microscopy (UEM) to resolve variations in CAP dynamics caused by differences in the degree of crystallinity in as-prepared and annealed GaAs lamellae. Following femtosecond photoexcitation, we directly imaged the generation and propagation dynamics of hypersonic CAPs in a mostly amorphous and, following an photothermal anneal, a mostly crystalline lamella. Subtle differences in both the initial hypersonic velocities and the asymptotic relaxation behaviours were resolved via construction of space-time contour plots from phonon wavefronts. Comparison to bulk sound velocities in crystalline and amorphous GaAs reveals the influence of the mixed amorphous-crystalline morphology on CAP dispersion behaviours. Further, an increase in the asymptotic velocity following annealing establishes the sensitivity of quantitative UEM imaging to both structural and compositional variations through differences in bonding and elasticity. Implications of extending the methods and results reported here to elucidating correlated electronic, optical and structural behaviours in semiconducting materials are discussed. This article is part of a discussion meeting issue 'Dynamic microscopy relating structure and function'.

摘要

半导体材料的飞秒光激发会导致相干声子(CAPs)的产生,其行为与本征和工程化的电子、光学及结构特性相关。虽然通常使用泵浦 - 探测光谱技术进行研究,但用这些全光学方法来解析纳米级结构和形态对CAP动力学的影响可能具有挑战性。在这里,我们使用超快电子显微镜(UEM)来解析由制备态和退火态GaAs薄片结晶度差异所引起的CAP动力学变化。在飞秒光激发之后,我们直接成像了在大部分为非晶态以及经过光热退火后大部分为晶态的薄片中高超音速CAPs的产生和传播动力学。通过从声子波前构建时空等高线图,解析了初始高超音速速度和渐近弛豫行为中的细微差异。与晶态和非晶态GaAs中的体声速进行比较,揭示了混合非晶 - 晶态形态对CAP色散行为的影响。此外,退火后渐近速度的增加通过键合和弹性的差异,确立了定量UEM成像对结构和成分变化的敏感性。本文还讨论了将此处报道的方法和结果扩展到阐明半导体材料中相关电子、光学和结构行为的意义。本文是“关联结构与功能的动态显微镜”讨论会议文集的一部分。

相似文献

1
High-resolution analogue of time-domain phonon spectroscopy in the transmission electron microscope.透射电子显微镜中时域声子光谱的高分辨率模拟。
Philos Trans A Math Phys Eng Sci. 2020 Dec 11;378(2186):20190598. doi: 10.1098/rsta.2019.0598. Epub 2020 Oct 26.
7
4D electron microscopy: principles and applications.4D 电子显微镜:原理与应用。
Acc Chem Res. 2012 Oct 16;45(10):1828-39. doi: 10.1021/ar3001684. Epub 2012 Sep 11.
9
Spatiotemporal Evolution of Coherent Elastic Strain Waves in a Single MoS Flake.单层 MoS 片中相干弹性应变波的时空演化。
Nano Lett. 2017 Jun 14;17(6):3952-3958. doi: 10.1021/acs.nanolett.7b01565. Epub 2017 May 17.
10
Four-Dimensional Ultrafast Electron Microscopy: Insights into an Emerging Technique.四维超快电子显微镜:新兴技术的新视角。
ACS Appl Mater Interfaces. 2017 Jan 11;9(1):3-16. doi: 10.1021/acsami.6b12301. Epub 2017 Jan 3.

引用本文的文献

2
Spatiotemporal determination of photoinduced strain in a Weyl semimetal.外尔半金属中光致应变的时空测定
Struct Dyn. 2024 Sep 30;11(5):054301. doi: 10.1063/4.0000263. eCollection 2024 Sep.
3
Dynamic microscopy relating structure and function.动态显微镜技术:关联结构与功能
Philos Trans A Math Phys Eng Sci. 2020 Dec 11;378(2186):20190596. doi: 10.1098/rsta.2019.0596. Epub 2020 Oct 26.

本文引用的文献

8
Spatiotemporal Evolution of Coherent Elastic Strain Waves in a Single MoS Flake.单层 MoS 片中相干弹性应变波的时空演化。
Nano Lett. 2017 Jun 14;17(6):3952-3958. doi: 10.1021/acs.nanolett.7b01565. Epub 2017 May 17.
9
Defect-mediated phonon dynamics in TaS and WSe.TaS和WSe中缺陷介导的声子动力学。
Struct Dyn. 2017 May 1;4(4):044019. doi: 10.1063/1.4982817. eCollection 2017 Jul.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验