Suppr超能文献

利用动态电流-电压曲线从实验数据中提取非线性积分发放模型。

Extracting non-linear integrate-and-fire models from experimental data using dynamic I-V curves.

作者信息

Badel Laurent, Lefort Sandrine, Berger Thomas K, Petersen Carl C H, Gerstner Wulfram, Richardson Magnus J E

机构信息

Laboratory of Computational Neuroscience, School of Computer and Communications Sciences and Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.

出版信息

Biol Cybern. 2008 Nov;99(4-5):361-70. doi: 10.1007/s00422-008-0259-4. Epub 2008 Nov 15.

Abstract

The dynamic I-V curve method was recently introduced for the efficient experimental generation of reduced neuron models. The method extracts the response properties of a neuron while it is subject to a naturalistic stimulus that mimics in vivo-like fluctuating synaptic drive. The resulting history-dependent, transmembrane current is then projected onto a one-dimensional current-voltage relation that provides the basis for a tractable non-linear integrate-and-fire model. An attractive feature of the method is that it can be used in spike-triggered mode to quantify the distinct patterns of post-spike refractoriness seen in different classes of cortical neuron. The method is first illustrated using a conductance-based model and is then applied experimentally to generate reduced models of cortical layer-5 pyramidal cells and interneurons, in injected-current and injected- conductance protocols. The resulting low-dimensional neuron models-of the refractory exponential integrate-and-fire type-provide highly accurate predictions for spike-times. The method therefore provides a useful tool for the construction of tractable models and rapid experimental classification of cortical neurons.

摘要

动态I-V曲线方法最近被引入用于高效地实验生成简化的神经元模型。该方法在神经元受到模拟体内波动突触驱动的自然刺激时提取其响应特性。然后将由此产生的依赖历史的跨膜电流投影到一维电流-电压关系上,这为一个易于处理的非线性积分发放模型提供了基础。该方法的一个吸引人的特点是它可以用于尖峰触发模式,以量化在不同类型的皮层神经元中看到的尖峰后不应期的不同模式。首先使用基于电导的模型来说明该方法,然后通过实验将其应用于生成皮层第5层锥体细胞和中间神经元的简化模型,采用注入电流和注入电导协议。由此产生的低维神经元模型——不应期指数积分发放类型——对尖峰时间提供了高度准确的预测。因此,该方法为构建易于处理的模型和对皮层神经元进行快速实验分类提供了一个有用的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949d/2798053/e297f97c935f/422_2008_Article_259_Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验