Dolan James, Chen Aiping, Weber Irene T, Harrison Robert W, Leis Jonathan
Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
J Mol Biol. 2009 Jan 16;385(2):568-79. doi: 10.1016/j.jmb.2008.10.083. Epub 2008 Nov 7.
A tetramer model for human immunodeficiency virus type 1 (HIV-1) integrase (IN) with DNA representing long terminal repeat (LTR) termini was previously assembled to predict the IN residues that interact with the LTR termini; these predictions were experimentally verified for nine amino acid residues [Chen, A., Weber, I. T., Harrison, R. W. & Leis, J. (2006). Identification of amino acids in HIV-1 and avian sarcoma virus integrase subsites required for specific recognition of the long terminal repeat ends. J. Biol. Chem., 281, 4173-4182]. In a similar strategy, the unique amino acids found in avian sarcoma virus IN, rather than HIV-1 or Mason-Pfizer monkey virus IN, were substituted into the structurally related positions of HIV-1 IN. Substitutions of six additional residues (Q44, L68, E69, D229, S230, and D253) showed changes in the 3' processing specificity of the enzyme, verifying their predicted interaction with the LTR DNA. The newly identified residues extend interactions along a 16-bp length of the LTR termini and are consistent with known LTR DNA/HIV-1 IN cross-links. The tetramer model for HIV-1 IN with LTR termini was modified to include two IN binding domains for lens-epithelium-derived growth factor/p75. The target DNA was predicted to bind in a surface trench perpendicular to the plane of the LTR DNA binding sites of HIV-1 IN and extending alongside lens-epithelium-derived growth factor. This hypothesis is supported by the in vitro activity phenotype of HIV-1 IN mutant, with a K219S substitution showing loss in strand transfer activity while maintaining 3' processing on an HIV-1 substrate. Mutations at seven other residues reported in the literature have the same phenotype, and all eight residues align along the length of the putative target DNA binding trench.
先前构建了一个用于人免疫缺陷病毒1型(HIV-1)整合酶(IN)的四聚体模型,其中DNA代表长末端重复序列(LTR)末端,以预测与LTR末端相互作用的IN残基;这些预测已通过实验验证了九个氨基酸残基[Chen, A., Weber, I. T., Harrison, R. W. & Leis, J. (2006). Identification of amino acids in HIV-1 and avian sarcoma virus integrase subsites required for specific recognition of the long terminal repeat ends. J. Biol. Chem., 281, 4173-4182]。采用类似策略,将禽肉瘤病毒IN中发现的独特氨基酸而非HIV-1或马森-辉瑞猴病毒IN中的氨基酸,替换到HIV-1 IN的结构相关位置。另外六个残基(Q44、L68、E69、D229、S230和D253)的替换显示出该酶3'加工特异性的变化,证实了它们与LTR DNA的预测相互作用。新鉴定的残基沿着LTR末端16个碱基对的长度扩展相互作用,并且与已知的LTR DNA/HIV-1 IN交联一致。HIV-1 IN与LTR末端的四聚体模型经过修改,纳入了两个晶状体上皮衍生生长因子/p75的IN结合结构域。预测靶DNA结合在垂直于HIV-1 IN的LTR DNA结合位点平面并沿晶状体上皮衍生生长因子延伸的表面沟槽中。HIV-1 IN突变体的体外活性表型支持了这一假设,K219S替换显示链转移活性丧失,同时在HIV-1底物上保持3'加工。文献中报道的其他七个残基的突变具有相同表型,并且所有八个残基沿着假定的靶DNA结合沟槽的长度排列。