Chen Aiping, Weber Irene T, Harrison Robert W, Leis Jonathan
Department of Microbiology and Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA.
J Biol Chem. 2006 Feb 17;281(7):4173-82. doi: 10.1074/jbc.M510628200. Epub 2005 Nov 18.
A tetramer model for HIV-1 integrase (IN) with DNA representing 20 bp of the U3 and U5 long terminal repeats (LTR) termini was assembled using structural and biochemical data and molecular dynamics simulations. It predicted amino acid residues on the enzyme surface that can interact with the LTR termini. A separate structural alignment of HIV-1, simian sarcoma virus (SIV), and avian sarcoma virus (ASV) INs predicted which of these residues were unique. To determine whether these residues were responsible for specific recognition of the LTR termini, the amino acids from ASV IN were substituted into the structurally equivalent positions of HIV-1 IN, and the ability of the chimeras to 3 ' process U5 HIV-1 or ASV duplex oligos was determined. This analysis demonstrated that there are multiple amino acid contacts with the LTRs and that substitution of ASV IN amino acids at many of the analogous positions in HIV-1 IN conferred partial ability to cleave ASV substrates with a concomitant loss in the ability to cleave the homologous HIV-1 substrate. HIV-1 IN residues that changed specificity include Val(72), Ser(153), Lys(160)-Ile(161), Gly(163)-Val(165), and His(171)-Leu(172). Because a chimera that combines several of these substitutions showed a specificity of cleavage of the U5 ASV substrate closer to wild type ASV IN compared with chimeras with individual amino acid substitutions, it appears that the sum of the IN interactions with the LTRs determines the specificity. Finally, residues Ser(153) and Val(72) in HIV-1 IN are among those that change in enzymes that develop resistance to naphthyridine carboxamide- and diketo acid-related inhibitors in cells. Thus, amino acid residues involved in recognition of the LTRs are among these positions that change in development of drug resistance.
利用结构和生化数据以及分子动力学模拟,构建了一个HIV-1整合酶(IN)的四聚体模型,其中DNA代表U3和U5长末端重复序列(LTR)末端的20个碱基对。该模型预测了酶表面可与LTR末端相互作用的氨基酸残基。对HIV-1、猿猴肉瘤病毒(SIV)和禽肉瘤病毒(ASV)的整合酶进行单独的结构比对,预测出这些残基中哪些是独特的。为了确定这些残基是否负责LTR末端的特异性识别,将ASV整合酶的氨基酸替换到HIV-1整合酶的结构等效位置,并测定嵌合体对HIV-1或ASV双链寡核苷酸3'端加工的能力。该分析表明,与LTR存在多个氨基酸接触,并且在HIV-1整合酶的许多类似位置替换ASV整合酶的氨基酸赋予了切割ASV底物的部分能力,同时丧失了切割同源HIV-1底物的能力。改变特异性的HIV-1整合酶残基包括Val(72)、Ser(153)、Lys(160)-Ile(161)、Gly(163)-Val(165)和His(171)-Leu(172)。由于与单个氨基酸替换的嵌合体相比,结合了其中几种替换的嵌合体对U5 ASV底物的切割特异性更接近野生型ASV整合酶,因此似乎整合酶与LTR相互作用的总和决定了特异性。最后,HIV-1整合酶中的Ser(153)和Val(72)残基是细胞中对萘啶羧酰胺和二酮酸相关抑制剂产生抗性的酶中发生变化的残基。因此,参与LTR识别的氨基酸残基位于耐药性发展过程中发生变化的这些位置之中。