Suppr超能文献

用于碎石机声场特性表征的光斑水听器与光纤探头水听器的比较。

A comparison of light spot hydrophone and fiber optic probe hydrophone for lithotripter field characterization.

作者信息

Smith N, Sankin G N, Simmons W N, Nanke R, Fehre J, Zhong P

机构信息

Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA.

出版信息

Rev Sci Instrum. 2012 Jan;83(1):014301. doi: 10.1063/1.3678638.

Abstract

The performance of a newly developed light spot hydrophone (LSHD) in lithotripter field characterization was compared to that of the fiber optic probe hydrophone (FOPH). Pressure waveforms produced by a stable electromagnetic shock wave source were measured by the LSHD and FOPH under identical experimental conditions. In the low energy regime, focus and field acoustic parameters matched well between the two hydrophones. At clinically relevant high energy settings for shock wave lithotripsy, the measured leading compressive pressure waveforms matched closely with each other. However, the LSHD recorded slightly larger |P_| (p < 0.05) and secondary peak compressive pressures (p < 0.01) than the FOPH, leading to about 20% increase in total acoustic pulse energy calculated in a 6 mm radius around the focus (p = 0.06). Tensile pulse durations deviated ~5% (p < 0.01) due to tensile wave shortening from cavitation activity using the LSHD. Intermittent compression spikes and laser light reflection artifacts have been correlated to bubble activity based on simultaneous high-speed imaging analysis. Altogether, both hydrophones are adequate for lithotripter field characterization as specified by the international standard IEC 61846.

摘要

将新开发的光点水听器(LSHD)在碎石机场表征中的性能与光纤探头水听器(FOPH)的性能进行了比较。在相同的实验条件下,用LSHD和FOPH测量了由稳定的电磁冲击波源产生的压力波形。在低能量状态下,两种水听器的焦点和声场声学参数匹配良好。在冲击波碎石术的临床相关高能量设置下,测得的领先压缩压力波形彼此紧密匹配。然而,LSHD记录的|P_|略大(p < 0.05),二次峰值压缩压力比FOPH大(p < 0.01),导致在焦点周围6 mm半径内计算的总声脉冲能量增加约20%(p = 0.06)。由于使用LSHD时空化活动导致拉伸波缩短,拉伸脉冲持续时间偏差约5%(p < 0.01)。基于同步高速成像分析,间歇性压缩尖峰和激光反射伪像已与气泡活动相关联。总之,根据国际标准IEC 61846的规定,两种水听器都适用于碎石机场表征。

相似文献

4
Shock wave interaction with laser-generated single bubbles.冲击波与激光产生的单个气泡的相互作用。
Phys Rev Lett. 2005 Jul 15;95(3):034501. doi: 10.1103/PhysRevLett.95.034501. Epub 2005 Jul 11.
8
Acoustic performance and clinical use of a fibreoptic hydrophone.光纤水听器的声学性能及临床应用
Ultrasound Med Biol. 1998 Jan;24(1):143-51. doi: 10.1016/s0301-5629(97)00236-6.

引用本文的文献

2
Comparison of Broad vs Narrow Focal Width Lithotripter Fields.宽聚焦与窄聚焦冲击波碎石场的比较
J Endourol. 2017 May;31(5):502-509. doi: 10.1089/end.2016.0560. Epub 2017 Apr 21.
3
Radial Shock Wave Devices Generate Cavitation.径向冲击波装置会产生空化现象。
PLoS One. 2015 Oct 28;10(10):e0140541. doi: 10.1371/journal.pone.0140541. eCollection 2015.
7
Turbulent water coupling in shock wave lithotripsy.冲击波碎石术中的湍流水耦合。
Phys Med Biol. 2013 Feb 7;58(3):735-48. doi: 10.1088/0031-9155/58/3/735. Epub 2013 Jan 15.

本文引用的文献

2
7
Hydrophone measurements in diagnostic ultrasound fields.诊断超声场中的水听器测量
IEEE Trans Ultrason Ferroelectr Freq Control. 1988;35(2):87-101. doi: 10.1109/58.4157.
8
Lithotripsy pulse measurement errors due to nonideal hydrophone and amplifier frequency responses.
IEEE Trans Ultrason Ferroelectr Freq Control. 1992;39(2):256-61. doi: 10.1109/58.139122.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验