Suppr超能文献

Chemosensor-driven artificial antennal lobe transient dynamics enable fast recognition and working memory.

作者信息

Muezzinoglu Mehmet K, Huerta Ramon, Abarbanel Henry D I, Ryan Margaret A, Rabinovich Mikhail I

机构信息

Institute for Nonlinear Science, University of California, San Diego, La Jolla, CA 92093-0402, U.S.A.

出版信息

Neural Comput. 2009 Apr;21(4):1018-37. doi: 10.1162/neco.2008.05-08-780.

Abstract

The speed and accuracy of odor recognition in insects can hardly be resolved by the raw descriptors provided by olfactory receptors alone due to their slow time constant and high variability. The animal overcomes these barriers by means of the antennal lobe (AL) dynamics, which consolidates the classificatory information in receptor signal with a spatiotemporal code that is enriched in odor sensitivity, particularly in its transient. Inspired by this fact, we propose an easily implementable AL-like network and show that it significantly expedites and enhances the identification of odors from slow and noisy artificial polymer sensor responses. The device owes its efficiency to two intrinsic mechanisms: inhibition (which triggers a competition) and integration (due to the dynamical nature of the network). The former functions as a sharpening filter extracting the features of receptor signal that favor odor separation, whereas the latter implements a working memory by accumulating the extracted features in trajectories. This cooperation boosts the odor specificity during the receptor transient, which is essential for fast odor recognition.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验