Suppr超能文献

通过印迹细胞学鉴别浸润性鳞状细胞癌与眼表浸润前病变的预测指标。

Predictive index to differentiate invasive squamous cell carcinoma from preinvasive ocular surface lesions by impression cytology.

作者信息

Barros J N, Lowen M S, Ballalai P L, Mascaro V L D M, Gomes J A P, Martins M C

机构信息

Department of Ophthalmology, Federal University of São Paulo, Doctor Penaforte Mendes Street 86, São Paulo 01308-010, Brazil.

出版信息

Br J Ophthalmol. 2009 Feb;93(2):209-14. doi: 10.1136/bjo.2008.147710. Epub 2008 Nov 19.

Abstract

BACKGROUND/AIMS: In the literature, no cytological features have been identified that reliably differentiate invasive squamous cell carcinoma (SCC) from preinvasive lesions in impression cytology (IC) samples. The aim was to identify cytological features related to malignancy and apply them in a quantitative model to determine an index score with the best predictive power to differentiate SCC from preinvasive ocular surface lesions by IC.

METHODS

39 patients with ocular surface epithelial lesions were enrolled. IC was obtained from all lesions before surgical excision. Specimens with atypical cells were evaluated regarding 11 cytological parameters based on the 2001 Bethesda system.

RESULTS

Histopathological diagnosis was pterygium in one case, actinic keratosis in nine cases, intraepithelial neoplasia in nine cases and SCC in 20 cases. Analysis of the receiver operating characteristic curve revealed that a predictive index score (cut-off point) > or =4.25 presented the best relationship between sensitivity and specificity in identifying SCC (sensitivity of 95%, specificity of 93%, positive predictive value of 95% and negative predictive value of 93%).

CONCLUSION

The scoring system model presented is suitable for clinical practice in differentiating SCC from preinvasive ocular surface lesions by IC and can be better evaluated with prospective use.

摘要

背景/目的:在文献中,尚未发现能在印片细胞学(IC)样本中可靠区分浸润性鳞状细胞癌(SCC)与癌前病变的细胞学特征。目的是识别与恶性肿瘤相关的细胞学特征,并将其应用于定量模型,以确定具有最佳预测能力的指数评分,通过IC区分SCC与眼表癌前病变。

方法

纳入39例眼表上皮病变患者。在手术切除前从所有病变处获取IC样本。根据2001年贝塞斯达系统,对具有非典型细胞的标本评估11个细胞学参数。

结果

组织病理学诊断为翼状胬肉1例,光化性角化病9例,上皮内瘤变9例,SCC 20例。对受试者工作特征曲线的分析显示,预测指数评分(截断点)≥4.25在识别SCC时敏感性和特异性之间呈现最佳关系(敏感性为95%,特异性为93%,阳性预测值为95%,阴性预测值为93%)。

结论

所提出的评分系统模型适用于通过IC区分SCC与眼表癌前病变的临床实践,前瞻性应用时可得到更好的评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验