Mirsaidov Utkur, Scrimgeour Jan, Timp Winston, Beck Kaethe, Mir Mustafa, Matsudaira Paul, Timp Gregory
Beckman Institute, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL 61801, USA.
Lab Chip. 2008 Dec;8(12):2174-81. doi: 10.1039/b807987k. Epub 2008 Oct 1.
We demonstrate a new method for creating synthetic tissue that has the potential to capture the three-dimensional (3D) complexity of a multi-cellular organism with submicron precision. Using multiple laminar fluid flows in a microfluidic network, we convey cells to an assembly area where multiple, time-shared optical tweezers are used to organize them into a complex array. The cells are then encapsulated in a 30 microm x 30 microm x 45 microm volume of photopolymerizable hydrogel that mimicks an extra-cellular matrix. To extend the size, shape and constituency of the array without loss of viability, we then step to an adjacent location while maintaining registration with the reference array, and repeat the process. Using this step-and-repeat method, we formed a heterogeneous array of E. coli genetically engineered with a lac switch that is functionally linked to fluorescence reporters. We then induced the array using ligands through a microfluidic network and followed the space-time development of the fluorescence to evaluate viability and metabolic activity.
我们展示了一种创建合成组织的新方法,该方法有可能以亚微米精度捕捉多细胞生物体的三维(3D)复杂性。利用微流控网络中的多个层流,我们将细胞输送到一个组装区域,在那里使用多个分时光镊将它们组织成一个复杂的阵列。然后将细胞封装在一个30微米×30微米×45微米体积的可光聚合水凝胶中,该水凝胶模拟细胞外基质。为了在不损失活力的情况下扩展阵列的大小、形状和组成,我们接着移动到相邻位置,同时与参考阵列保持对齐,并重复这个过程。使用这种步进重复方法,我们形成了一个由经过基因工程改造的大肠杆菌组成的异质阵列,该大肠杆菌带有与荧光报告基因功能相连的乳糖开关。然后,我们通过微流控网络使用配体诱导该阵列,并跟踪荧光的时空发展,以评估活力和代谢活性。