Uhrig Kai, Kurre Rainer, Schmitz Christian, Curtis Jennifer E, Haraszti Tamás, Clemen Anabel E-M, Spatz Joachim P
Max-Planck-Institute for Metals Research, Department of New Materials and Biosystems, Heisenbergstr. 3, D-70569 Stuttgart, Germany.
Lab Chip. 2009 Mar 7;9(5):661-8. doi: 10.1039/b817633g. Epub 2009 Jan 23.
Holographic optical tweezers (HOT) are a versatile technology, with which complex arrays and movements of optical traps can be realized to manipulate multiple microparticles in parallel and to measure the forces affecting them in the piconewton range. We report on the combination of HOT with a fluorescence microscope and a stop-flow, multi-channel microfluidic device. The integration of a high-speed camera into the setup allows for the calibration of all the traps simultaneously both using Boltzmann statistics or the power spectrum density of the particle diffusion within the optical traps. This setup permits complete spatial, chemical and visual control of the microenvironment applicable to probing chemo-mechanical properties of cellular or subcellular structures. As an example we constructed a biomimetic, quasi-two-dimensional actin network on an array of trapped polystyrene microspheres inside the microfluidic chamber. During crosslinking of the actin filaments by Mg(2+) ions, we observe the build up of mechanical tension throughout the actin network. Thus, we demonstrate how our integrated HOT-microfluidics platform can be used as a reconfigurable force sensor array with piconewton resolution to investigate chemo-mechanical processes.
全息光镊(HOT)是一种多功能技术,利用该技术可以实现光阱的复杂阵列和运动,从而并行操纵多个微粒,并测量皮牛顿范围内作用于它们的力。我们报道了全息光镊与荧光显微镜以及停流多通道微流控装置的结合。在装置中集成高速相机,能够使用玻尔兹曼统计或光阱内粒子扩散的功率谱密度同时对所有光阱进行校准。这种装置允许对微环境进行完整的空间、化学和视觉控制,适用于探测细胞或亚细胞结构的化学机械特性。例如,我们在微流控腔内捕获的聚苯乙烯微球阵列上构建了一个仿生准二维肌动蛋白网络。在Mg(2+)离子交联肌动蛋白丝的过程中,我们观察到整个肌动蛋白网络中机械张力的形成。因此,我们展示了我们集成的全息光镊 - 微流控平台如何用作具有皮牛顿分辨率的可重构力传感器阵列来研究化学机械过程。