Suppr超能文献

相位延迟对因果关系估计的干扰效应。

Confounding effects of phase delays on causality estimation.

机构信息

Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada.

出版信息

PLoS One. 2013;8(1):e53588. doi: 10.1371/journal.pone.0053588. Epub 2013 Jan 21.

Abstract

Linear and non-linear techniques for inferring causal relations between the brain signals representing the underlying neuronal systems have become a powerful tool to extract the connectivity patterns in the brain. Typically these tools employ the idea of Granger causality, which is ultimately based on the temporal precedence between the signals. At the same time, phase synchronization between coupled neural ensembles is considered a mechanism implemented in the brain to integrate relevant neuronal ensembles to perform a cognitive or perceptual task. Phase synchronization can be studied by analyzing the effects of phase-locking between the brain signals. However, we should expect that there is no one-to-one mapping between the observed phase lag and the time precedence as specified by physically interacting systems. Specifically, phase lag observed between two signals may interfere with inferring causal relations. This could be of critical importance for the coupled non-linear oscillating systems, with possible time delays in coupling, when classical linear cross-spectrum strategies for solving phase ambiguity are not efficient. To demonstrate this, we used a prototypical model of coupled non-linear systems, and compared three typical pipelines of inferring Granger causality, as established in the literature. Specifically, we compared the performance of the spectral and information-theoretic Granger pipelines as well as standard Granger causality in their relations to the observed phase differences for frequencies at which the signals become synchronized to each other. We found that an information-theoretic approach, which takes into account different time lags between the past of one signal and the future of another signal, was the most robust to phase effects.

摘要

线性和非线性技术已成为从代表潜在神经元系统的大脑信号中提取大脑连接模式的有力工具,用于推断大脑信号之间的因果关系。这些工具通常采用格兰杰因果关系的思想,而格兰杰因果关系最终基于信号之间的时间优先关系。同时,耦合神经集合之间的相位同步被认为是大脑中用于整合相关神经元集合以执行认知或感知任务的一种机制。可以通过分析大脑信号之间的锁相效应来研究相位同步。然而,我们应该预期,观察到的相移与物理相互作用系统指定的时间优先顺序之间没有一一对应的映射关系。具体来说,两个信号之间观察到的相移可能会干扰因果关系的推断。对于具有耦合非线性振荡系统和可能的耦合延迟的情况,这可能至关重要,因为经典的线性互谱策略无法有效地解决相位模糊问题。为了证明这一点,我们使用了耦合非线性系统的原型模型,并比较了文献中建立的三种典型的推断格兰杰因果关系的方法。具体来说,我们比较了谱和信息论格兰杰因果关系的性能以及标准格兰杰因果关系,以了解它们与信号相互同步时频率的观察相位差之间的关系。我们发现,考虑到一个信号的过去和另一个信号的未来之间的不同时间延迟的信息论方法对相位效应最稳健。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/219b/3549927/8e1a55e9a8f2/pone.0053588.g001.jpg

相似文献

1
Confounding effects of phase delays on causality estimation.
PLoS One. 2013;8(1):e53588. doi: 10.1371/journal.pone.0053588. Epub 2013 Jan 21.
2
Nonlinear connectivity by Granger causality.
Neuroimage. 2011 Sep 15;58(2):330-8. doi: 10.1016/j.neuroimage.2010.01.099. Epub 2010 Feb 2.
3
How to detect the Granger-causal flow direction in the presence of additive noise?
Neuroimage. 2015 Mar;108:301-18. doi: 10.1016/j.neuroimage.2014.12.017. Epub 2014 Dec 13.
4
Identifying the pulsed neuron networks' structures by a nonlinear Granger causality method.
BMC Neurosci. 2020 Feb 12;21(1):7. doi: 10.1186/s12868-020-0555-z.
5
Robust point-process Granger causality analysis in presence of exogenous temporal modulations and trial-by-trial variability in spike trains.
PLoS Comput Biol. 2021 Jan 25;17(1):e1007675. doi: 10.1371/journal.pcbi.1007675. eCollection 2021 Jan.
6
Quantification of effective connectivity in the brain using a measure of directed information.
Comput Math Methods Med. 2012;2012:635103. doi: 10.1155/2012/635103. Epub 2012 May 16.
8
Spike-field Granger causality for hybrid neural data analysis.
J Neurophysiol. 2019 Aug 1;122(2):809-822. doi: 10.1152/jn.00246.2019. Epub 2019 Jun 26.
9
Modeling positive Granger causality and negative phase lag between cortical areas.
Neuroimage. 2014 Oct 1;99:411-8. doi: 10.1016/j.neuroimage.2014.05.063. Epub 2014 Jun 2.
10
Confounding effects of indirect connections on causality estimation.
J Neurosci Methods. 2009 Oct 30;184(1):152-60. doi: 10.1016/j.jneumeth.2009.07.014. Epub 2009 Jul 21.

引用本文的文献

1
Predicting the effect of micro-stimulation on macaque prefrontal activity based on spontaneous circuit dynamics.
Phys Rev Res. 2024 Dec;5(4). doi: 10.1103/physrevresearch.5.043211. Epub 2024 Dec 7.
2
Dominant Patterns of Information Flow in the Propagation of the Neuromagnetic Somatosensory Steady-State Response.
Front Neural Circuits. 2019 Jan 15;12:118. doi: 10.3389/fncir.2018.00118. eCollection 2018.
3
The Brain Network in a Model of Thalamocortical Dysrhythmia.
Brain Connect. 2019 Apr;9(3):273-284. doi: 10.1089/brain.2018.0621. Epub 2019 Mar 7.
4
Untangling Brain-Wide Dynamics in Consciousness by Cross-Embedding.
PLoS Comput Biol. 2015 Nov 19;11(11):e1004537. doi: 10.1371/journal.pcbi.1004537. eCollection 2015 Nov.
5
Neural Connectivity in Epilepsy as Measured by Granger Causality.
Front Hum Neurosci. 2015 Jul 14;9:194. doi: 10.3389/fnhum.2015.00194. eCollection 2015.

本文引用的文献

1
Empirical and theoretical aspects of generation and transfer of information in a neuromagnetic source network.
Front Syst Neurosci. 2011 Nov 23;5:96. doi: 10.3389/fnsys.2011.00096. eCollection 2011.
2
3
Transfer entropy in magnetoencephalographic data: quantifying information flow in cortical and cerebellar networks.
Prog Biophys Mol Biol. 2011 Mar;105(1-2):80-97. doi: 10.1016/j.pbiomolbio.2010.11.006. Epub 2010 Nov 27.
4
Transfer entropy--a model-free measure of effective connectivity for the neurosciences.
J Comput Neurosci. 2011 Feb;30(1):45-67. doi: 10.1007/s10827-010-0262-3. Epub 2010 Aug 13.
5
Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkeys.
Front Neuroeng. 2010 Mar 30;3:3. doi: 10.3389/fneng.2010.00003. eCollection 2010.
6
The effect of filtering on Granger causality based multivariate causality measures.
Neuroimage. 2010 Apr 1;50(2):577-88. doi: 10.1016/j.neuroimage.2009.12.050. Epub 2009 Dec 21.
7
Exploring transient transfer entropy based on a group-wise ICA decomposition of EEG data.
Neuroimage. 2010 Jan 15;49(2):1593-600. doi: 10.1016/j.neuroimage.2009.08.027. Epub 2009 Aug 18.
8
Asymmetry in pulse-coupled oscillators with delay.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jun;79(6 Pt 2):065203. doi: 10.1103/PhysRevE.79.065203. Epub 2009 Jun 11.
9
Confounding effects of indirect connections on causality estimation.
J Neurosci Methods. 2009 Oct 30;184(1):152-60. doi: 10.1016/j.jneumeth.2009.07.014. Epub 2009 Jul 21.
10
Key role of coupling, delay, and noise in resting brain fluctuations.
Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10302-7. doi: 10.1073/pnas.0901831106. Epub 2009 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验