Qiu Anqi, Albert Marilyn, Younes Laurent, Miller Michael I
Division of Bioengineering, National University of Singapore, Singapore.
Neuroimage. 2009 Mar;45(1 Suppl):S51-60. doi: 10.1016/j.neuroimage.2008.10.039. Epub 2008 Nov 7.
Serial MRI human brain scans have facilitated the detection of brain development and of the earliest signs of neuropsychiatric and neurodegenerative diseases, monitoring disease progression, and resolving drug effects in clinical trials for preventing or slowing the rate of brain degeneration. To track anatomical shape changes in serial images, we introduce new point-based time sequence large deformation diffeomorphic metric mapping (TS-LDDMM) to infer the time flow of within-subject geometric shape changes that carry known observations through a period. Its Euler-Lagrange equation is generalized for anatomies whose shapes are characterized by point sets, such as landmarks, curves, and surfaces. The time-dependent momentum obtained from the TS-LDDMM encodes within-subject shape changes. For the purpose of across-subject shape comparison, we then propose a diffeomorphic analysis framework to translate within-subject deformation in a global template without incorporating across-subject anatomical variations via parallel transport technique. The analysis involves the retraction of the within-subject time-dependent momentum along the TS-LDDMM trajectory from each time to the baseline, the translation of the momentum in a global template, and the reconstruction of the TS-LDDMM trajectory starting from the global template.
连续的人脑磁共振成像扫描有助于检测大脑发育以及神经精神疾病和神经退行性疾病的最早迹象,监测疾病进展,并在预防或减缓大脑退化速度的临床试验中解析药物效果。为了跟踪序列图像中的解剖形状变化,我们引入了新的基于点的时间序列大变形微分同胚度量映射(TS-LDDMM),以推断携带已知观测值的个体内部几何形状变化在一段时间内的时间流。其欧拉-拉格朗日方程针对形状由点集(如地标、曲线和曲面)表征的解剖结构进行了推广。从TS-LDDMM获得的随时间变化的动量编码了个体内部的形状变化。为了进行个体间形状比较,我们随后提出了一个微分同胚分析框架,通过平行传输技术在不纳入个体间解剖变异的情况下,将个体内部变形转换到全局模板中。该分析包括将个体内部随时间变化的动量沿着TS-LDDMM轨迹从每个时间点回缩到基线,在全局模板中平移动量,以及从全局模板开始重建TS-LDDMM轨迹。