Campbell Kristen M, Fletcher P Thomas
Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT.
Graphs Biomed Image Anal Comput Anat Imaging Genet (2017). 2017 Sep;10551:186-198. doi: 10.1007/978-3-319-67675-3_17. Epub 2017 Sep 8.
This paper presents an efficient, numerically stable algorithm for parallel transport of tangent vectors in the group of diffeomorphisms. Previous approaches to parallel transport in large deformation diffeomorphic metric mapping (LDDMM) of images represent a momenta field, the dual of a tangent vector to the diffeomorphism group, as a scalar field times the image gradient. This "scalar momenta" constraint couples tangent vectors with the images being deformed and leads to computationally costly horizontal lifts in parallel transport. This paper uses the vector momenta formulation of LDDMM, which decouples the diffeomorphisms from the structures being transformed, e.g., images, point sets, etc. This decoupling leads to parallel transport expressed as a linear ODE in the Lie algebra. Solving this ODE directly is numerically stable and significantly faster than other LDDMM parallel transport methods. Results on 2D synthetic data and 3D brain MRI demonstrate that our algorithm is fast and conserves the inner products of the transported tangent vectors.
本文提出了一种用于在微分同胚群中并行传输切向量的高效、数值稳定的算法。先前在图像的大变形微分同胚度量映射(LDDMM)中进行并行传输的方法,将动量场(微分同胚群切向量的对偶)表示为标量场乘以图像梯度。这种“标量动量”约束将切向量与正在变形的图像耦合在一起,并导致并行传输中计算成本高昂的水平提升。本文使用LDDMM的向量动量公式,该公式将微分同胚与被变换的结构(如图像、点集等)解耦。这种解耦导致并行传输表示为李代数中的线性常微分方程(ODE)。直接求解此ODE在数值上是稳定的,并且比其他LDDMM并行传输方法快得多。二维合成数据和三维脑磁共振成像(MRI)的结果表明,我们的算法速度快,并且能保持传输切向量的内积。