Suppr超能文献

通过约化到李代数实现微分同胚群中的高效平行传输

Efficient Parallel Transport in the Group of Diffeomorphisms via Reduction to the Lie Algebra.

作者信息

Campbell Kristen M, Fletcher P Thomas

机构信息

Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT.

出版信息

Graphs Biomed Image Anal Comput Anat Imaging Genet (2017). 2017 Sep;10551:186-198. doi: 10.1007/978-3-319-67675-3_17. Epub 2017 Sep 8.

Abstract

This paper presents an efficient, numerically stable algorithm for parallel transport of tangent vectors in the group of diffeomorphisms. Previous approaches to parallel transport in large deformation diffeomorphic metric mapping (LDDMM) of images represent a momenta field, the dual of a tangent vector to the diffeomorphism group, as a scalar field times the image gradient. This "scalar momenta" constraint couples tangent vectors with the images being deformed and leads to computationally costly horizontal lifts in parallel transport. This paper uses the vector momenta formulation of LDDMM, which decouples the diffeomorphisms from the structures being transformed, e.g., images, point sets, etc. This decoupling leads to parallel transport expressed as a linear ODE in the Lie algebra. Solving this ODE directly is numerically stable and significantly faster than other LDDMM parallel transport methods. Results on 2D synthetic data and 3D brain MRI demonstrate that our algorithm is fast and conserves the inner products of the transported tangent vectors.

摘要

本文提出了一种用于在微分同胚群中并行传输切向量的高效、数值稳定的算法。先前在图像的大变形微分同胚度量映射(LDDMM)中进行并行传输的方法,将动量场(微分同胚群切向量的对偶)表示为标量场乘以图像梯度。这种“标量动量”约束将切向量与正在变形的图像耦合在一起,并导致并行传输中计算成本高昂的水平提升。本文使用LDDMM的向量动量公式,该公式将微分同胚与被变换的结构(如图像、点集等)解耦。这种解耦导致并行传输表示为李代数中的线性常微分方程(ODE)。直接求解此ODE在数值上是稳定的,并且比其他LDDMM并行传输方法快得多。二维合成数据和三维脑磁共振成像(MRI)的结果表明,我们的算法速度快,并且能保持传输切向量的内积。

相似文献

1
Efficient Parallel Transport in the Group of Diffeomorphisms via Reduction to the Lie Algebra.
Graphs Biomed Image Anal Comput Anat Imaging Genet (2017). 2017 Sep;10551:186-198. doi: 10.1007/978-3-319-67675-3_17. Epub 2017 Sep 8.
2
A VECTOR MOMENTA FORMULATION OF DIFFEOMORPHISMS FOR IMPROVED GEODESIC REGRESSION AND ATLAS CONSTRUCTION.
Proc IEEE Int Symp Biomed Imaging. 2013 Apr;2013:1219-1222. doi: 10.1109/ISBI.2013.6556700.
3
Frequency Diffeomorphisms for Efficient Image Registration.
Inf Process Med Imaging. 2017 Jun;10265:559-570. doi: 10.1007/978-3-319-59050-9_44. Epub 2017 May 23.
4
Multi-manifold diffeomorphic metric mapping for aligning cortical hemispheric surfaces.
Neuroimage. 2010 Jan 1;49(1):355-65. doi: 10.1016/j.neuroimage.2009.08.026. Epub 2009 Aug 18.
7
Whole brain diffeomorphic metric mapping via integration of sulcal and gyral curves, cortical surfaces, and images.
Neuroimage. 2011 May 1;56(1):162-73. doi: 10.1016/j.neuroimage.2011.01.067. Epub 2011 Jan 31.
8
Finite-Dimensional Lie Algebras for Fast Diffeomorphic Image Registration.
Inf Process Med Imaging. 2015;24:249-59. doi: 10.1007/978-3-319-19992-4_19.
9
Computing Diffeomorphic Paths for Large Motion Interpolation.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2013 Jun;2013:1227-1232. doi: 10.1109/CVPR.2013.162.
10
ResNet-LDDMM: Advancing the LDDMM Framework Using Deep Residual Networks.
IEEE Trans Pattern Anal Mach Intell. 2023 Mar;45(3):3707-3720. doi: 10.1109/TPAMI.2022.3174908. Epub 2023 Feb 3.

引用本文的文献

1
Fast three-dimensional image generation for healthy brain aging using diffeomorphic registration.
Hum Brain Mapp. 2023 Mar;44(4):1289-1308. doi: 10.1002/hbm.26165. Epub 2022 Dec 5.
2
A Riemannian Framework for Longitudinal Analysis of Resting-State Functional Connectivity.
Med Image Comput Comput Assist Interv. 2018 Sep;11072:145-153. doi: 10.1007/978-3-030-00931-1_17. Epub 2018 Sep 13.

本文引用的文献

1
Finite-Dimensional Lie Algebras for Fast Diffeomorphic Image Registration.
Inf Process Med Imaging. 2015;24:249-59. doi: 10.1007/978-3-319-19992-4_19.
2
A VECTOR MOMENTA FORMULATION OF DIFFEOMORPHISMS FOR IMPROVED GEODESIC REGRESSION AND ATLAS CONSTRUCTION.
Proc IEEE Int Symp Biomed Imaging. 2013 Apr;2013:1219-1222. doi: 10.1109/ISBI.2013.6556700.
3
Morphometry of anatomical shape complexes with dense deformations and sparse parameters.
Neuroimage. 2014 Nov 1;101:35-49. doi: 10.1016/j.neuroimage.2014.06.043. Epub 2014 Jun 26.
4
Bayesian estimation of regularization and atlas building in diffeomorphic image registration.
Inf Process Med Imaging. 2013;23:37-48. doi: 10.1007/978-3-642-38868-2_4.
5
Schild's ladder for the parallel transport of deformations in time series of images.
Inf Process Med Imaging. 2011;22:463-74. doi: 10.1007/978-3-642-22092-0_38.
6
Optimal data-driven sparse parameterization of diffeomorphisms for population analysis.
Inf Process Med Imaging. 2011;22:123-34. doi: 10.1007/978-3-642-22092-0_11.
7
Geodesic Shooting for Computational Anatomy.
J Math Imaging Vis. 2006 Jan 31;24(2):209-228. doi: 10.1007/s10851-005-3624-0.
8
Transport of Relational Structures in Groups of Diffeomorphisms.
J Math Imaging Vis. 2008 Sep 1;32(1):41-56. doi: 10.1007/s10851-008-0074-5.
9
Evolutions equations in computational anatomy.
Neuroimage. 2009 Mar;45(1 Suppl):S40-50. doi: 10.1016/j.neuroimage.2008.10.050. Epub 2008 Nov 12.
10
Time sequence diffeomorphic metric mapping and parallel transport track time-dependent shape changes.
Neuroimage. 2009 Mar;45(1 Suppl):S51-60. doi: 10.1016/j.neuroimage.2008.10.039. Epub 2008 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验