Suppr超能文献

基于脑沟回曲线、皮质曲面和图像的全脑可变形度量映射。

Whole brain diffeomorphic metric mapping via integration of sulcal and gyral curves, cortical surfaces, and images.

机构信息

Division of Bioengineering, National University of Singapore, Singapore.

出版信息

Neuroimage. 2011 May 1;56(1):162-73. doi: 10.1016/j.neuroimage.2011.01.067. Epub 2011 Jan 31.

Abstract

This paper introduces a novel large deformation diffeomorphic metric mapping algorithm for whole brain registration where sulcal and gyral curves, cortical surfaces, and intensity images are simultaneously carried from one subject to another through a flow of diffeomorphisms. To the best of our knowledge, this is the first time that the diffeomorphic metric from one brain to another is derived in a shape space of intensity images and point sets (such as curves and surfaces) in a unified manner. We describe the Euler-Lagrange equation associated with this algorithm with respect to momentum, a linear transformation of the velocity vector field of the diffeomorphic flow. The numerical implementation for solving this variational problem, which involves large-scale kernel convolution in an irregular grid, is made feasible by introducing a class of computationally friendly kernels. We apply this algorithm to align magnetic resonance brain data. Our whole brain mapping results show that our algorithm outperforms the image-based LDDMM algorithm in terms of the mapping accuracy of gyral/sulcal curves, sulcal regions, and cortical and subcortical segmentation. Moreover, our algorithm provides better whole brain alignment than combined volumetric and surface registration (Postelnicu et al., 2009) and hierarchical attribute matching mechanism for elastic registration (HAMMER) (Shen and Davatzikos, 2002) in terms of cortical and subcortical volume segmentation.

摘要

本文介绍了一种新颖的大脑全容积变形测地映射算法,可通过微分同胚流将脑沟和脑回曲线、皮质表面和强度图像从一个体素同步映射到另一个体素。据我们所知,这是首次在强度图像和点集(如曲线和曲面)的形状空间中以统一的方式从一个大脑推导到另一个大脑的微分同胚。我们描述了与该算法相关的欧拉-拉格朗日方程,涉及到微分同胚流速度矢量场的线性变换。通过引入一类计算友好的核函数,解决这个变分问题的数值实现变得可行,该核函数涉及不规则网格中的大规模核卷积。我们将该算法应用于磁共振脑数据的配准。我们的全脑映射结果表明,在脑回/脑沟曲线、脑沟区域、皮质和皮质下分割的映射精度方面,我们的算法优于基于图像的 LDDMM 算法。此外,与基于体素和基于表面的配准(Postelnicu 等人,2009)和弹性配准的层次属性匹配机制(HAMMER)(Shen 和 Davatzikos,2002)相比,我们的算法在皮质和皮质下体积分割方面提供了更好的全脑配准。

相似文献

2
Multiresolution Diffeomorphic Mapping for Cortical Surfaces.用于皮质表面的多分辨率微分同胚映射
Inf Process Med Imaging. 2015;24:315-26. doi: 10.1007/978-3-319-19992-4_24.
5
Multi-structure whole brain registration and population average.多结构全脑配准与总体平均值
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:5797-800. doi: 10.1109/IEMBS.2009.5335196.
9
Principal component based diffeomorphic surface mapping.基于主成分的可变形曲面映射。
IEEE Trans Med Imaging. 2012 Feb;31(2):302-11. doi: 10.1109/TMI.2011.2168567. Epub 2011 Sep 19.

引用本文的文献

10
Registration.注册。
Neuromethods. 2018;136:3-12. doi: 10.1007/978-1-4939-7647-8_1. Epub 2018 Feb 28.

本文引用的文献

1
Large Deformation Diffeomorphic Metric Curve Mapping.大变形微分同胚度量曲线映射
Int J Comput Vis. 2008 Dec 1;80(3):317-336. doi: 10.1007/s11263-008-0141-9.
6
Combined volumetric and surface registration.体积与表面联合配准。
IEEE Trans Med Imaging. 2009 Apr;28(4):508-22. doi: 10.1109/TMI.2008.2004426. Epub 2008 Aug 15.
7
The emerging discipline of Computational Functional Anatomy.计算功能解剖学这一新兴学科。
Neuroimage. 2009 Mar;45(1 Suppl):S16-39. doi: 10.1016/j.neuroimage.2008.10.044. Epub 2008 Nov 10.
8
Diffeomorphic demons: efficient non-parametric image registration.微分同胚恶魔算法:高效的非参数图像配准
Neuroimage. 2009 Mar;45(1 Suppl):S61-72. doi: 10.1016/j.neuroimage.2008.10.040. Epub 2008 Nov 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验