Suppr超能文献

纵向形状分析混合效应模型中的贝叶斯协变量选择

Bayesian Covariate Selection in Mixed-Effects Models For Longitudinal Shape Analysis.

作者信息

Muralidharan Prasanna, Fishbaugh James, Kim Eun Young, Johnson Hans J, Paulsen Jane S, Gerig Guido, Fletcher P Thomas

机构信息

School of Computing & SCI Institute, University of Utah.

CSE, New York University.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:656-659. doi: 10.1109/ISBI.2016.7493352. Epub 2016 Jun 16.

Abstract

The goal of longitudinal shape analysis is to understand how anatomical shape changes over time, in response to biological processes, including growth, aging, or disease. In many imaging studies, it is also critical to understand how these shape changes are affected by other factors, such as sex, disease diagnosis, IQ, etc. Current approaches to longitudinal shape analysis have focused on modeling age-related shape changes, but have not included the ability to handle covariates. In this paper, we present a novel Bayesian mixed-effects shape model that incorporates simultaneous relationships between longitudinal shape data and multiple predictors or covariates to the model. Moreover, we place an Automatic Relevance Determination (ARD) prior on the parameters, that lets us automatically select which covariates are most relevant to the model based on observed data. We evaluate our proposed model and inference procedure on a longitudinal study of Huntington's disease from PREDICT-HD. We first show the utility of the ARD prior for model selection in a univariate modeling of striatal volume, and next we apply the full high-dimensional longitudinal shape model to putamen shapes.

摘要

纵向形状分析的目标是了解解剖形状如何随时间变化,以响应包括生长、衰老或疾病在内的生物学过程。在许多成像研究中,了解这些形状变化如何受到其他因素(如性别、疾病诊断、智商等)的影响也至关重要。当前的纵向形状分析方法主要集中在对与年龄相关的形状变化进行建模,但尚未具备处理协变量的能力。在本文中,我们提出了一种新颖的贝叶斯混合效应形状模型,该模型将纵向形状数据与多个预测变量或协变量之间的同步关系纳入模型。此外,我们对参数采用自动相关性确定(ARD)先验,这使我们能够根据观测数据自动选择与模型最相关的协变量。我们在来自PREDICT-HD的亨廷顿舞蹈症纵向研究中评估了我们提出的模型和推理过程。我们首先在纹状体体积的单变量建模中展示了ARD先验在模型选择中的效用,接下来我们将完整的高维纵向形状模型应用于壳核形状。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3aa7/5225990/f3f0bf0f0502/nihms827755f1.jpg

相似文献

1
Bayesian Covariate Selection in Mixed-Effects Models For Longitudinal Shape Analysis.纵向形状分析混合效应模型中的贝叶斯协变量选择
Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:656-659. doi: 10.1109/ISBI.2016.7493352. Epub 2016 Jun 16.
3
Bayesian quantile regression joint models: Inference and dynamic predictions.贝叶斯分位数回归联合模型:推断和动态预测。
Stat Methods Med Res. 2019 Aug;28(8):2524-2537. doi: 10.1177/0962280218784757. Epub 2018 Jul 2.
9
Hierarchical Geodesic Polynomial Model for Multilevel Analysis of Longitudinal Shape.用于纵向形状多级分析的分层测地线多项式模型
Inf Process Med Imaging. 2023 Jun;13939:810-821. doi: 10.1007/978-3-031-34048-2_62. Epub 2023 Jun 8.

引用本文的文献

本文引用的文献

1
Sasaki Metrics for Analysis of Longitudinal Data on Manifolds.用于流形上纵向数据分析的佐佐木度量
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2012 Jun;2012:1027-1034. doi: 10.1109/CVPR.2012.6247780.
2
Mixed-Effects Shape Models for Estimating Longitudinal Changes in Anatomy.用于估计解剖结构纵向变化的混合效应形状模型。
Spatiotemporal Image Anal Longitud Time Ser Image Data (2012). 2012 Oct;7570:76-87. doi: 10.1007/978-3-642-33555-6_7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验