Suppr超能文献

关于机械扰动后心脏环化形态发生的建模。

On modeling morphogenesis of the looping heart following mechanical perturbations.

作者信息

Ramasubramanian Ashok, Nerurkar Nandan L, Achtien Kate H, Filas Benjamen A, Voronov Dmitry A, Taber Larry A

机构信息

Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA.

出版信息

J Biomech Eng. 2008 Dec;130(6):061018. doi: 10.1115/1.2978990.

Abstract

Looping is a crucial early phase during heart development, as the initially straight heart tube (HT) deforms into a curved tube to lay out the basic plan of the mature heart. This paper focuses on the first phase of looping, called c-looping, when the HT bends ventrally and twists dextrally (rightward) to create a c-shaped tube. Previous research has shown that bending is an intrinsic process, while dextral torsion is likely caused by external forces acting on the heart. However, the specific mechanisms that drive and regulate looping are not yet completely understood. Here, we present new experimental data and finite element models to help define these mechanisms for the torsional component of c-looping. First, with regions of growth and contraction specified according to experiments on chick embryos, a three-dimensional model exhibits morphogenetic deformation consistent with observations for normal looping. Next, the model is tested further using experiments in which looping is perturbed by removing structures that exert forces on the heart--a membrane (splanchnopleure (SPL)) that presses against the ventral surface of the heart and the left and right primitive atria. In all cases, the model predicts the correct qualitative behavior. Finally, a two-dimensional model of the HT cross section is used to study a feedback mechanism for stress-based regulation of looping. The model is tested using experiments in which the SPL is removed before, during, and after c-looping. In each simulation, the model predicts the correct response. Hence, these models provide new insight into the mechanical mechanisms that drive and regulate cardiac looping.

摘要

成环是心脏发育过程中至关重要的早期阶段,因为最初笔直的心脏管会变形为弯曲的管子,从而奠定成熟心脏的基本结构。本文聚焦于成环的第一阶段,即c-成环,此时心脏管向腹侧弯曲并右旋(向右)形成一个c形管。先前的研究表明,弯曲是一个内在过程,而右旋扭转可能是由作用于心脏的外力引起的。然而,驱动和调节成环的具体机制尚未完全明确。在此,我们展示新的实验数据和有限元模型,以帮助确定c-成环扭转部分的这些机制。首先,根据对鸡胚的实验指定生长和收缩区域,一个三维模型呈现出与正常成环观察结果一致的形态发生变形。接下来,通过去除对心脏施加力的结构(一种挤压心脏腹面的膜(脏壁层(SPL))以及左右原始心房)来干扰成环的实验,对该模型进行进一步测试。在所有情况下,该模型都能预测正确的定性行为。最后,使用心脏管横截面的二维模型来研究基于应力的成环调节反馈机制。通过在c-成环之前、期间和之后去除SPL的实验对该模型进行测试。在每次模拟中,该模型都能预测正确的反应。因此,这些模型为驱动和调节心脏成环的机械机制提供了新的见解。

相似文献

1
On modeling morphogenesis of the looping heart following mechanical perturbations.
J Biomech Eng. 2008 Dec;130(6):061018. doi: 10.1115/1.2978990.
2
The role of mechanical forces in the torsional component of cardiac looping.
Ann N Y Acad Sci. 2010 Feb;1188:103-10. doi: 10.1111/j.1749-6632.2009.05089.x.
3
Optical coherence tomography as a tool for measuring morphogenetic deformation of the looping heart.
Anat Rec (Hoboken). 2007 Sep;290(9):1057-68. doi: 10.1002/ar.20575.
4
The role of mechanical forces in dextral rotation during cardiac looping in the chick embryo.
Dev Biol. 2004 Aug 15;272(2):339-50. doi: 10.1016/j.ydbio.2004.04.033.
5
Computational model for early cardiac looping.
Ann Biomed Eng. 2006 Aug;34(8):1655-69. doi: 10.1007/s10439-005-9021-4.
6
7
Bending and twisting the embryonic heart: a computational model for c-looping based on realistic geometry.
Front Physiol. 2014 Aug 12;5:297. doi: 10.3389/fphys.2014.00297. eCollection 2014.
8
Material properties and residual stress in the stage 12 chick heart during cardiac looping.
J Biomech Eng. 2004 Dec;126(6):823-30. doi: 10.1115/1.1824129.
9
On the role of intrinsic and extrinsic forces in early cardiac S-looping.
Dev Dyn. 2013 Jul;242(7):801-16. doi: 10.1002/dvdy.23968. Epub 2013 Jun 5.
10
Bending of the looping heart: differential growth revisited.
J Biomech Eng. 2014 Aug;136(8):0810021-08100215. doi: 10.1115/1.4026645.

引用本文的文献

1
Sodium Fluoride Exposure Induces Developmental Toxicity and Cardiotoxicity in Zebrafish Embryos.
Biol Trace Elem Res. 2024 Sep 17. doi: 10.1007/s12011-024-04381-4.
2
Effects of cardiac growth on electrical dyssynchrony in the single ventricle patient.
Comput Methods Biomech Biomed Engin. 2024 Jun;27(8):1011-1027. doi: 10.1080/10255842.2023.2222203. Epub 2023 Jun 14.
3
Multiscale simulations of left ventricular growth and remodeling.
Biophys Rev. 2021 Aug 25;13(5):729-746. doi: 10.1007/s12551-021-00826-5. eCollection 2021 Oct.
4
Of form and function: Early cardiac morphogenesis across classical and emerging model systems.
Semin Cell Dev Biol. 2021 Oct;118:107-118. doi: 10.1016/j.semcdb.2021.04.025. Epub 2021 May 14.
5
Computational models of cardiac hypertrophy.
Prog Biophys Mol Biol. 2021 Jan;159:75-85. doi: 10.1016/j.pbiomolbio.2020.07.001. Epub 2020 Jul 21.
6
Embryonic aortic arch hemodynamics are a functional biomarker for ethanol-induced congenital heart defects [Invited].
Biomed Opt Express. 2017 Feb 24;8(3):1823-1837. doi: 10.1364/BOE.8.001823. eCollection 2017 Mar 1.
7
Speckle variance optical coherence tomography of blood flow in the beating mouse embryonic heart.
J Biophotonics. 2017 May;10(5):735-743. doi: 10.1002/jbio.201600293. Epub 2017 Apr 18.
8
Longitudinal Imaging of Heart Development With Optical Coherence Tomography.
IEEE J Sel Top Quantum Electron. 2012 May-Jun;18(3):1166-1175. doi: 10.1109/JSTQE.2011.2166060.
9
Why is cytoskeletal contraction required for cardiac fusion before but not after looping begins?
Phys Biol. 2015 Jan 30;12(1):016012. doi: 10.1088/1478-3975/12/1/016012.
10
Bending and twisting the embryonic heart: a computational model for c-looping based on realistic geometry.
Front Physiol. 2014 Aug 12;5:297. doi: 10.3389/fphys.2014.00297. eCollection 2014.

本文引用的文献

2
4D embryonic cardiography using gated optical coherence tomography.
Opt Express. 2006 Jan 23;14(2):736-48. doi: 10.1364/opex.14.000736.
3
Theoretical study of Beloussov's hyper-restoration hypothesis for mechanical regulation of morphogenesis.
Biomech Model Mechanobiol. 2008 Dec;7(6):427-41. doi: 10.1007/s10237-007-0106-x. Epub 2007 Oct 2.
4
Optical coherence tomography as a tool for measuring morphogenetic deformation of the looping heart.
Anat Rec (Hoboken). 2007 Sep;290(9):1057-68. doi: 10.1002/ar.20575.
5
Knowing in your heart what's right.
Trends Cell Biol. 1997 Nov;7(11):447-53. doi: 10.1016/S0962-8924(97)01150-1.
6
Computational modeling of morphogenesis regulated by mechanical feedback.
Biomech Model Mechanobiol. 2008 Apr;7(2):77-91. doi: 10.1007/s10237-007-0077-y. Epub 2007 Feb 21.
7
Computational model for early cardiac looping.
Ann Biomed Eng. 2006 Aug;34(8):1655-69. doi: 10.1007/s10439-005-9021-4.
8
Morphogenetic adaptation of the looping embryonic heart to altered mechanical loads.
Dev Dyn. 2006 Jul;235(7):1822-9. doi: 10.1002/dvdy.20813.
9
Biophysical mechanisms of cardiac looping.
Int J Dev Biol. 2006;50(2-3):323-32. doi: 10.1387/ijdb.052045lt.
10
Role of actin polymerization in bending of the early heart tube.
Dev Dyn. 2005 Aug;233(4):1272-86. doi: 10.1002/dvdy.20488.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验