Suppr超能文献

使用质谱法进行蛋白质组分析研究的综合多层次质量控制

Integrated multi-level quality control for proteomic profiling studies using mass spectrometry.

作者信息

Cairns David A, Perkins David N, Stanley Anthea J, Thompson Douglas, Barrett Jennifer H, Selby Peter J, Banks Rosamonde E

机构信息

Cancer Research UK Clinical Centre, Leeds Institute of Molecular Medicine, St James's University Hospital, Leeds, UK.

出版信息

BMC Bioinformatics. 2008 Dec 4;9:519. doi: 10.1186/1471-2105-9-519.

Abstract

BACKGROUND

Proteomic profiling using mass spectrometry (MS) is one of the most promising methods for the analysis of complex biological samples such as urine, serum and tissue for biomarker discovery. Such experiments are often conducted using MALDI-TOF (matrix-assisted laser desorption/ionisation time-of-flight) and SELDI-TOF (surface-enhanced laser desorption/ionisation time-of-flight) MS. Using such profiling methods it is possible to identify changes in protein expression that differentiate disease states and individual proteins or patterns that may be useful as potential biomarkers. However, the incorporation of quality control (QC) processes that allow the identification of low quality spectra reliably and hence allow the removal of such data before further analysis is often overlooked. In this paper we describe rigorous methods for the assessment of quality of spectral data. These procedures are presented in a user-friendly, web-based program. The data obtained post-QC is then examined using variance components analysis to quantify the amount of variance due to some of the factors in the experimental design.

RESULTS

Using data from a SELDI profiling study of serum from patients with different levels of renal function, we show how the algorithms described in this paper may be used to detect systematic variability within and between sample replicates, pooled samples and SELDI chips and spots. Manual inspection of those spectral data that were identified as being of poor quality confirmed the efficacy of the algorithms. Variance components analysis demonstrated the relatively small amount of technical variance attributable to day of profile generation and experimental array.

CONCLUSION

Using the techniques described in this paper it is possible to reliably detect poor quality data within proteomic profiling experiments undertaken by MS. The removal of these spectra at the initial stages of the analysis substantially improves the confidence of putative biomarker identification and allows inter-experimental comparisons to be carried out with greater confidence.

摘要

背景

使用质谱(MS)进行蛋白质组分析是分析尿液、血清和组织等复杂生物样本以发现生物标志物最有前景的方法之一。此类实验通常使用基质辅助激光解吸/电离飞行时间(MALDI-TOF)和表面增强激光解吸/电离飞行时间(SELDI-TOF)质谱进行。使用这种分析方法,可以识别区分疾病状态的蛋白质表达变化以及可能用作潜在生物标志物的单个蛋白质或模式。然而,纳入质量控制(QC)流程以可靠地识别低质量光谱,从而在进一步分析之前去除此类数据的做法常常被忽视。在本文中,我们描述了评估光谱数据质量的严格方法。这些程序以用户友好的基于网络的程序呈现。然后使用方差成分分析检查质量控制后获得的数据,以量化实验设计中某些因素导致的方差量。

结果

使用来自不同肾功能水平患者血清的SELDI分析研究的数据,我们展示了本文所述算法如何用于检测样本重复、混合样本以及SELDI芯片和斑点内部和之间的系统变异性。对那些被确定为质量差的光谱数据进行人工检查证实了算法的有效性。方差成分分析表明,归因于谱图生成日期和实验阵列的技术方差相对较小。

结论

使用本文所述技术,可以在质谱进行的蛋白质组分析实验中可靠地检测低质量数据。在分析的初始阶段去除这些光谱可大幅提高假定生物标志物识别的可信度,并使实验间比较能够更有信心地进行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b22/2657802/3397cdc58613/1471-2105-9-519-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验